Universality, Tolerance, Chaos and Order

What is the minimum possible number of edges in a graph that contains a copy of every graph on n vertices with maximum degree a most k ? This question, as well as several related variants, received a considerable amount of attention during the last decade. In this short survey we describe the known results focusing on the main ideas in the proofs, discuss the remaining open problems, and mention a recent application in the investigation of the complexity of subgraph containment problems.

[1]  Dániel Marx,et al.  Can you beat treewidth? , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[2]  Omer Reingold,et al.  Finding Collisions in Interactive Protocols - A Tight Lower Bound on the Round Complexity of Statistically-Hiding Commitments , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[3]  Martin Grohe The complexity of homomorphism and constraint satisfaction problems seen from the other side , 2007, JACM.

[4]  Noga Alon,et al.  Sparse universal graphs for bounded‐degree graphs , 2007, Random Struct. Algorithms.

[5]  Arnaud Labourel,et al.  On induced-universal graphs for the class of bounded-degree graphs , 2008, Inf. Process. Lett..

[6]  Yoshiharu Kohayakawa,et al.  Near-optimum Universal Graphs for Graphs with Bounded Degrees , 2001, RANDOM-APPROX.

[7]  Vojtech Rödl,et al.  Hypergraph Packing and Graph Embedding , 1999, Combinatorics, Probability and Computing.

[8]  Arnold L. Rosenberg,et al.  Universal Graphs for Bounded-Degree Trees and Planar Graphs , 1989, SIAM J. Discret. Math..

[9]  Vojtech Rödl,et al.  The Ramsey number of a graph with bounded maximum degree , 1983, J. Comb. Theory, Ser. B.

[10]  Michael R. Capalbo Small Universal Graphs for Bounded-Degree Planar Graphs , 1999, SODA '99.

[11]  Paul D. Seymour,et al.  Graph Minors: XV. Giant Steps , 1996, J. Comb. Theory, Ser. B.

[12]  Charles E. Leiserson,et al.  How to assemble tree machines , 1984 .

[13]  Michael R. Capalbo,et al.  Small universal graphs , 1999, STOC '99.

[14]  Noga Alon,et al.  Sparse Balanced Partitions and the Complexity of Subgraph Problems , 2011, SIAM J. Discret. Math..

[15]  Russell Impagliazzo,et al.  Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[16]  Arnold L. Rosenberg,et al.  Perfect Storage Representations for Families of Data Structures , 1983 .

[17]  Ge Xia,et al.  Linear FPT reductions and computational lower bounds , 2004, STOC '04.

[18]  Noga Alon,et al.  Optimal universal graphs with deterministic embedding , 2008, SODA '08.

[19]  R. Graham,et al.  On graphs which contain all sparse graphs , 1982 .

[20]  Ge Xia,et al.  Tight lower bounds for certain parameterized NP-hard problems , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..

[21]  Andrzej Rucinski,et al.  Matching and covering the vertices of a random graph by copies of a given graph , 1992, Discret. Math..

[22]  Steve Butler,et al.  Induced-Universal Graphs for Graphs with Bounded Maximum Degree , 2009, Graphs Comb..

[23]  Oliver Riordan,et al.  Spanning Subgraphs of Random Graphs , 2000, Combinatorics, Probability and Computing.

[24]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[25]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[26]  Kathryn Fraughnaugh,et al.  Introduction to graph theory , 1973, Mathematical Gazette.

[27]  Mam Riess Jones Color Coding , 1962, Human factors.

[28]  Ronald L. Graham,et al.  On Universal Graphs for Spanning Trees , 1983 .

[29]  Yoshiharu Kohayakawa,et al.  Universality and tolerance , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[30]  B. A. Reed,et al.  Algorithmic Aspects of Tree Width , 2003 .

[31]  Yoshiharu Kohayakawa,et al.  Sparse partition universal graphs for graphs of bounded degree , 2011 .

[32]  Noga Alon,et al.  Sparse universal graphs , 2002 .

[33]  Noga Alon,et al.  Fault tolerant graphs, perfect hash functions and disjoint paths , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[34]  Penny E. Haxell On the Strong Chromatic Number , 2004, Comb. Probab. Comput..

[35]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[36]  Fan Chung Graham,et al.  On graphs which contain all small trees , 1978, J. Comb. Theory, Ser. B.

[37]  Joel Friedman,et al.  Expanding graphs contain all small trees , 1987, Comb..