The permutation-path coloring problem on trees

[1]  A. Tucker,et al.  Coloring a Family of Circular Arcs , 1975 .

[2]  Gérard Viennot,et al.  Permutations selon leurs pics, creux, doubles montées et double descentes, nombres d'euler et nombres de Genocchi , 1979, Discret. Math..

[3]  Philippe Flajolet Combinatorial aspects of continued fractions , 1980, Discret. Math..

[4]  Gary L. Miller,et al.  The Complexity of Coloring Circular Arcs and Chords , 1980, SIAM J. Algebraic Discret. Methods.

[5]  Joseph Y.-T. Leung,et al.  Efficient algorithms for interval graphs and circular-arc graphs , 1982, Networks.

[6]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[7]  H. E. Daniels,et al.  The maximum of a random walk whose mean path has a maximum , 1985 .

[8]  Gérard Viennot,et al.  A combinatorial theory for general orthogonal polynomials with extensions and applications , 1985 .

[9]  Jeffrey C. Lagarias,et al.  On the Capacity of Disjointly Shared Networks , 1986, Comput. Networks.

[10]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[11]  Guy Louchard,et al.  Random Walks, Gaussian Processes and List Structures , 1987, Theor. Comput. Sci..

[12]  Frank Thomson Leighton,et al.  An approximate max-flow min-cut theorem for uniform multicommodity flow problems with applications to approximation algorithms , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[13]  H. E. Daniels,et al.  The maximum of a Gaussian process whose mean path has a maximum, with an application to the strength of bundles of fibres , 1989, Advances in Applied Probability.

[14]  H. Fleischner Eulerian graphs and related topics , 1990 .

[15]  Philippe Biane,et al.  Permutations following excess type and number of inversions and combinatory interpretation of a continued fraction of Heine , 1993 .

[16]  Philippe Biane,et al.  Permutations Suivant le Type d'Exce'dance et le Nombre d'Inversions et Interpre'tation Combinatoire d'une Fraction Continue de Heine , 1993, Eur. J. Comb..

[17]  Eli Upfal,et al.  Efficient routing in all-optical networks , 1994, STOC '94.

[18]  N. Raghavan Eecient Routing in All-optical Networks , 1994 .

[19]  Guy Louchard,et al.  Dynamic Analysis of some Relational Databases Parameters , 1995, Theor. Comput. Sci..

[20]  Yuval Rabani,et al.  Improved bounds for all optical routing , 1995, SODA '95.

[21]  Alexander Russell,et al.  A Note on Optical Routing on Trees , 1997, Inf. Process. Lett..

[22]  Stéphane Pérennes,et al.  Colouring Paths in Directed Symmetric Trees with Applications to WDM Routing , 1997, ICALP.

[23]  L. Gargano Colouring all directed paths in a symmetric tree with applications to WDM routing , 1997 .

[24]  Klaus Jansen,et al.  Call scheduling in trees, rings and meshes , 1997, Proceedings of the Thirtieth Hawaii International Conference on System Sciences.

[25]  Hisao Tamaki,et al.  Routing a Permutation in the Hypercube by Two Sets of Edge Disjoint Paths , 1997, J. Parallel Distributed Comput..

[26]  Peter Winkler,et al.  Ring routing and wavelength translation , 1998, SODA '98.

[27]  Ioannis Caragiannis,et al.  Wavelength Routing of Symmetric Communication Requests in Directed Fiber Trees , 1998, SIROCCO.

[28]  Mike Paterson,et al.  On permutation communications in all-optical rings , 1998, SIROCCO.

[29]  Klaus Jansen,et al.  Optimal Wavelength Routing on Directed Fiber Trees , 1999, Theor. Comput. Sci..

[30]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .