A parallel Schur method for solving continuous-time algebraic Riccati equations

Numerical algorithms for solving the continuous-time algebraic Riccati matrix equation on a distributed memory parallel computer are considered. In particular, it is shown that the Schur method, based on computing the stable invariant subspace of a Hamiltonian matrix, can be parallelized in an efficient and scalable way. Our implementation employs the state-of-the-art library ScaLAPACK as well as recently developed parallel methods for reordering the eigenvalues in a real Schur form. Some experimental results are presented, confirming the scalability of our implementation and comparing it with an existing implementation of the matrix sign iteration from the PLiCOC library.

[1]  Enrique S. Quintana-Ortí,et al.  Parallele Numerische Simulation Für Physik Und Kontinuumsmechanik Solving Linear-quadratic Optimal Control Problems on Parallel Computers Preprintreihe Des Chemnitzer Sfb 393 , 2022 .

[2]  A. Laub A schur method for solving algebraic Riccati equations , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[3]  Krister Dackland,et al.  Parallel and Blocked Algorithms for Reduction of a Regular Matrix Pair to Hessenberg-Triangular and Generalized Schur Forms , 2002, PARA.

[4]  Jack J. Dongarra,et al.  A Parallel Algorithm for the Reduction of a Nonsymmetric Matrix to Block Upper-Hessenberg Form , 1995, Parallel Comput..

[5]  Bo Kågström,et al.  Parallel Solvers for Sylvester-Type Matrix Equations with Applications in Condition Estimation, Part I , 2010, ACM Trans. Math. Softw..

[6]  Enrique S. Quintana-Ortí,et al.  Solving algebraic Riccati equations on parallel computers using Newton's method with exact line search , 2000, Parallel Comput..

[7]  A. Malyshev Parallel Algorithm for Solving Some Spectral Problems of Linear Algebra , 1993 .

[8]  Karen S. Braman,et al.  The Multishift QR Algorithm. Part II: Aggressive Early Deflation , 2001, SIAM J. Matrix Anal. Appl..

[9]  B. Kågström,et al.  The Multishift QZ Algorithm with Aggressive Early Deflation ? , 2006 .

[10]  KågströmBo,et al.  Parallel Solvers for Sylvester-Type Matrix Equations with Applications in Condition Estimation, Part I , 2010 .

[11]  Bo Kågström,et al.  Parallel Solvers for Sylvester-Type Matrix Equations with Applications in Condition Estimation, Part I , 2010, ACM Trans. Math. Softw..

[12]  R. Byers Solving the algebraic Riccati equation with the matrix sign function , 1987 .

[13]  Jack J. Dongarra,et al.  A Parallel Implementation of the Nonsymmetric QR Algorithm for Distributed Memory Architectures , 2002, SIAM J. Sci. Comput..

[14]  Angelika Bunse-Gerstner,et al.  A Jacobi-like method for solving algebraic Riccati equations on parallel computers , 1997, IEEE Trans. Autom. Control..

[15]  Daniel Kressner,et al.  Multishift Variants of the QZ Algorithm with Aggressive Early Deflation , 2006, SIAM J. Matrix Anal. Appl..

[16]  Krister Dackland,et al.  Parallel Two-Stage Reduction of a Regular Matrix Pair to Hessenberg-Triangular Form , 2000, PARA.

[17]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[18]  R. Byers A Hamiltonian-Jacobi algorithm , 1990 .

[19]  Rafael Mayo,et al.  Parallel Solution of Large-Scale and Sparse Generalized Algebraic Riccati Equations , 2006, Euro-Par.

[20]  Thilo Penzl LYAPACK Users Guide - A MATLAB Toolbox for Large Lyapunov and Riccati . . . , 2000 .

[21]  P. Benner,et al.  Solving large-scale control problems , 2004, IEEE Control Systems.

[22]  Gene H. Golub,et al.  Matrix computations , 1983 .

[23]  Boris N. Khoromskij,et al.  Solution of Large Scale Algebraic Matrix Riccati Equations by Use of Hierarchical Matrices , 2003, Computing.

[24]  Daniel Kressner,et al.  Parallel Variants of the Multishift QZ Algorithm with Advanced Deflation Techniques , 2006, PARA.

[25]  Enrique S. Quintana-Ortí,et al.  A Portable Subroutine Library for Solving Linear Control Problems on Distributed Memory Computers , 1998, Wide Area Networks and High Performance Computing.

[26]  V. Mehrmann The Autonomous Linear Quadratic Control Problem: Theory and Numerical Solution , 1991 .

[27]  Jaeyoung Choi,et al.  The design of a parallel dense linear algebra software library: Reduction to Hessenberg, tridiagonal, and bidiagonal form , 1995, Numerical Algorithms.

[28]  J. D. Roberts,et al.  Linear model reduction and solution of the algebraic Riccati equation by use of the sign function , 1980 .

[29]  Sabine Van Huffel,et al.  SLICOT—A Subroutine Library in Systems and Control Theory , 1999 .

[30]  David J. N. Limebeer,et al.  Linear Robust Control , 1994 .

[31]  Corporate The MPI Forum,et al.  MPI: a message passing interface , 1993, Supercomputing '93.

[32]  V. Mehrmann The Autonomous Linear Quadratic Control Problem , 1991 .

[33]  Christian Mehl,et al.  On Asymptotic Convergence of Nonsymmetric Jacobi Algorithms , 2008, SIAM J. Matrix Anal. Appl..

[34]  Jack Dongarra,et al.  ScaLAPACK Users' Guide , 1987 .

[35]  Daniel Boley,et al.  Numerical Methods for Linear Control Systems , 1994 .

[36]  Khalide Jbilou,et al.  Block Krylov Subspace Methods for Large Algebraic Riccati Equations , 2003, Numerical Algorithms.

[37]  Jan G. Korvink,et al.  Oberwolfach Benchmark Collection , 2005 .

[38]  Krister Dackland,et al.  Blocked algorithms and software for reduction of a regular matrix pair to generalized Schur form , 1999, TOMS.

[39]  Daniel Kressner,et al.  Parallel eigenvalue reordering in real Schur forms , 2009 .

[40]  A. Varga,et al.  On stochastic balancing related model reduction , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[41]  A. Laub,et al.  Benchmarks for the numerical solution of algebraic Riccati equations , 1997 .