Global Boundary Stabilization of the Korteweg-de Vries-Burgers Equation

The problem of global exponential stabilization by boundary feedback for the Korteweg-de Vries-Burgers equation on the domain [0, 1] is considered. We derive a control law of the form u(0) = ux(1) = uxx(1) − k[u(1)3 + u(1)] = 0, where k is a sufficiently large positive constant, and prove that it guarantees L2-global exponential stability, H3-global asymptotic stability, and H3-semiglobal exponential stability. Our decay rate estimates depend not only on the diffusion coefficient but also on the dispersion coefficient. The closed-loop system is shown to be well posed.

[1]  D. Korteweg,et al.  XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 1895 .

[2]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[3]  José Canosa,et al.  The Korteweg-de Vries-Burgers equation , 1977 .

[4]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[5]  J. Bona,et al.  Travelling-wave solutions to the Korteweg-de Vries-Burgers equation , 1985, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[6]  D. L. Russell,et al.  Stabilisation de l'équation de Korteweg-de Vries , 1991 .

[7]  W. Mlak Hilbert Spaces and Operator Theory , 1991 .

[8]  I. A. Shishmarev,et al.  The step-decay problem for the Korteweg-de Vries-Burgers equation , 1991 .

[9]  On the decay of step for the Korteweg—de Vries—Burgers equation , 1992 .

[10]  O. Karakashian,et al.  Computations of blow-up and decay for periodic solutions of the generalized Korteweg-de Vries-Burgers equation , 1992 .

[11]  David L. Russell,et al.  Controllability and stabilizability of the third-order linear dispersion equation on a periodic domain , 1993 .

[12]  Zhang Linghai Decay of solutions of a higher order multidimensional nonlinear Korteweg–de Vries–Burgers system , 1994, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[13]  Bing-Yu Zhang,et al.  Boundary Stabilization of the Korteweg-de Vries Equation and the Korteweg-de Vries-Burgers Equation , 2012, Acta Applicandae Mathematicae.

[14]  Lionel Rosier,et al.  Control and Stabilization of the Korteweg-de Vries Equation on a Periodic Domain , 2009, 0905.3478.

[15]  David L. Russell,et al.  Smoothing and Decay Properties of Solutions of the Korteweg-deVries Equation on a Periodic Domain with Point Dissipation , 1995 .

[16]  Bing-Yu Zhang,et al.  Analyticity of solutions of the generalized Korteweg-De Vries equation with respect to their initial values , 1995 .

[17]  Asymptotic behaviour of solutions to the Korteweg-deVries-Burgers system , 1995 .

[18]  David L. Russell,et al.  Exact controllability and stabilizability of the Korteweg-de Vries equation , 1996 .

[19]  J. Bona,et al.  The initial-value problem for the forced Korteweg-de Vries equation , 1996, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[20]  Lionel Rosier,et al.  Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain , 1997 .

[21]  Asymptotic behaviour of solutions to the Korteweg-de Vries-Burgers equation , 1998 .

[22]  M. Krstić,et al.  On global stabilization of Burgers' equation by boundary control , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[23]  M. Krstić,et al.  Burgers' equation with nonlinear boundary feedback: H1 stability, well-posedness and simulation , 2000 .