Utility representations from the concept of measure

Abstract The main purpose of this paper is to show a unified approach, using measure theory, in order to study the numerical representation of ordered sets.

[1]  G. Debreu,et al.  Theory of Value , 1959 .

[2]  Continuous utility functions , 1985 .

[3]  Graciela Chichilnisky Spaces of Economic Agents , 1977 .

[4]  L. Nachbin,et al.  The Haar integral , 1965 .

[5]  Ghanshyam B. Mehta Existence of an order-preserving function on normally preordered spaces , 1986, Bulletin of the Australian Mathematical Society.

[6]  G. Debreu Mathematical Economics: Representation of a preference ordering by a numerical function , 1983 .

[7]  G. Herden On the existence of utility functions ii , 1989 .

[8]  G. Cantor Beiträge zur Begründung der transfiniten Mengenlehre , 1897 .

[9]  A. Kirman,et al.  Introduction to Equilibrium Analysis , 1977 .

[10]  B. Peleg UTILITY FUNCTIONS FOR PARTIALLY ORDERED TOPOLOGICAL SPACES. , 1970 .

[11]  G. Cantor,et al.  Beiträge zur Begründung der transfiniten Mengenlehre. (Zweiter Artikel.) , 2022 .

[12]  S. Eilenberg Ordered Topological Spaces , 1941 .

[13]  Andreu Mas-Colell,et al.  On the Continuous Representation of Preorders , 1977 .

[14]  J. Jaffray Existence of a Continuous Utility Function: An Elementary Proof , 1975 .

[15]  Wilhellm Neuefeind On continuous utility , 1972 .

[16]  Peter C. Fishburn,et al.  Utility theory for decision making , 1970 .

[17]  G. Mehta On a theorem of Fleischer , 1986, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[18]  Herman Wold,et al.  A synthesis of pure demand analysis , 1943 .

[19]  Construction of a Continuous Utility Function for a Class of Preferences , 1976 .

[20]  I. Fleischer Numerical Representation of Utility , 1961 .