Parallel Processing in the Human Visual System

Parallel visual pathways subserving separate visual functions have been well documented in animals. Evidence of similar parallel pathways have also been demonstrated in humans. This review is not intended to be a comprehensive overview of parallel processing; a number of such reviews exist (Rowe and Stone, 1977; Lennie, 1980; Stone, 1983; Kaas, 1986; Shapley and Perry, 1986; DeYoe and Van Essen, 1988). This chapter is meant to provide the reader with a general background of the evidence for parallel processing in the primate visual system, to extend that evidence to the human visual system, and finally to speculate that selective components of these parallel pathways may be compromised in certain disease states. This review also serves to make the reader aware of the many classification schemes used in describing parallel pathways and of the tests that may be used to assess the functioning of these pathways.

[1]  W. Merigan,et al.  Selective damage to large cells in the cat retinogeniculate pathway by 2,5-hexanedione , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[2]  J. Enoch Quantitative layer-by-layer perimetry. , 1978, Investigative ophthalmology & visual science.

[3]  R. Blanks,et al.  The human accessory optic system , 1988, Brain Research.

[4]  A. Sadun,et al.  Ultrastructural and paraphenylene studies of degeneration in the primate visual system: degenerative remnants persist for much longer than expected. , 1988, Journal of electron microscopy technique.

[5]  P. Lennie Parallel visual pathways: A review , 1980, Vision Research.

[6]  W R Green,et al.  Chronic human glaucoma causing selectively greater loss of large optic nerve fibers. , 1988, Ophthalmology.

[7]  J. Kulikowski,et al.  VEPs and contrast , 1983, Vision Research.

[8]  R. W. Rodieck,et al.  Retinal ganglion cell classes in the Old World monkey: morphology and central projections. , 1981, Science.

[9]  F. Martin,et al.  Flicker Contrast Sensitivity in Normal and Specifically Disabled Readers , 1987, Perception.

[10]  M. Borchert,et al.  Assessment of visual impairment in patients with Alzheimer's disease. , 1987, American journal of ophthalmology.

[11]  Eugene Switkes,et al.  Parallel processing of motion and colour information , 1987, Nature.

[12]  J. Schaechter,et al.  Neuroanatomy of the human visual system: Part III Three retinal projections to the hypothalamus , 1986 .

[13]  J R Lishman,et al.  Visual-evoked responses elicited by the onset and offset of sinusoidal gratings: latency, waveform, and topographic characteristics. , 1982, Investigative ophthalmology & visual science.

[14]  R. Hess Contrast sensitivity assessment of functional amblyopia in humans. , 1979, Transactions of the ophthalmological societies of the United Kingdom.

[15]  Andrew M. Derrington,et al.  Pattern discrimination with flickering stimuli , 1981, Vision Research.

[16]  C. Miller,et al.  Optic-nerve degeneration in Alzheimer's disease. , 1986, The New England journal of medicine.

[17]  D M Levi,et al.  Spatio-temporal interactions in anisometropic and strabismic amblyopia. , 1977, Investigative ophthalmology & visual science.

[18]  S. Udenfriend,et al.  Decrease in Adrenal Tyrosine Hydroxylase and Increase in Norepinephrine Synthesis in Rats Given L-Dopa , 1971, Science.

[19]  F. Previc Origins and Implications of Frequency‐Doubling in the Visual Evoked Potential , 1987, American journal of optometry and physiological optics.

[20]  G. Dunkelberger,et al.  Chronic glaucoma selectively damages large optic nerve fibers. , 1987, Investigative ophthalmology & visual science.

[21]  F. Campbell,et al.  Differences in the neural basis of human amblyopias: The effect of mean luminance , 1980, Vision Research.

[22]  A. Adams,et al.  Clinical measures of central vision function in glaucoma and ocular hypertension. , 1987, Archives of ophthalmology.

[23]  Lois E. H. Smith,et al.  Neuroanatomy of the human visual system: Part II Retinal projections to the superior colliculus and pulvinar , 1986 .

[24]  D. Burr,et al.  Spatial and temporal selectivity of the human motion detection system , 1985, Vision Research.

[25]  K. Nakayama,et al.  Steady state visual evoked potentials in the alert primate , 1982, Vision Research.

[26]  D. M. Parker,et al.  Latency changes in the human visual evoked response to sinusoidal gratings , 1977, Vision Research.

[27]  Earl L. Smith,et al.  Behavioral studies of stimulus deprivation amblyopia in monkeys , 1981, Vision Research.

[28]  C. Enroth-Cugell,et al.  The contrast sensitivity of retinal ganglion cells of the cat , 1966, The Journal of physiology.

[29]  D. Tolhurst,et al.  Psychophysical evidence for sustained and transient detectors in human vision , 1973, The Journal of physiology.

[30]  K. Kenyon,et al.  Paraphenylenediamine: A New Method for Tracing Human Visual Pathways , 1983, Journal of neuropathology and experimental neurology.

[31]  J. Lund,et al.  Interlaminar connections and pyramidal neuron organisation in the visual cortex, area 17, of the Macaque monkey , 1975 .

[32]  C. Blakemore,et al.  The physiological effects of monocular deprivation and their reversal in the monkey's visual cortex. , 1978, The Journal of physiology.

[33]  D. C. Van Essen,et al.  Concurrent processing streams in monkey visual cortex , 1988, Trends in Neurosciences.

[34]  A Bradley,et al.  Contrast sensitivity in anisometropic amblyopia. , 1981, Investigative ophthalmology & visual science.

[35]  Earl L. Smith,et al.  Behavioral studies on the effect of abnormal early visual experience in monkeys: Spatial modulation sensitivity , 1983, Vision Research.

[36]  R. Shapley,et al.  X and Y cells in the lateral geniculate nucleus of macaque monkeys. , 1982, The Journal of physiology.

[37]  G. Trick Retinal potentials in patients with primary open-angle glaucoma: physiological evidence for temporal frequency tuning deficits. , 1985, Investigative ophthalmology & visual science.

[38]  A J Bron,et al.  Detection of optic nerve damage in ocular hypertension. , 1985, The British journal of ophthalmology.

[39]  A. Sadun Neuroanatomy of the human visual system: Part I Retinal projections to the LGN and pretectum as demonstrated with a new method , 1986 .

[40]  J. Schaechter,et al.  Tracing axons in the human brain: A method utilizing light and TEM techniques , 1985 .

[41]  F. Baker,et al.  Extracellular Recordings from Human Retinal Ganglion Cells , 1971, Science.

[42]  Harold E. Bedell,et al.  Effects of luminance on the visual acuity of strabismic and anisometropic amblyopes and optically blurred normals , 1987, Vision Research.

[43]  Jonathan Stone,et al.  Parallel Processing in the Visual System , 1983, Perspectives in Vision Research.

[44]  R. W. Rodieck,et al.  Parasol and midget ganglion cells of the human retina , 1985, The Journal of comparative neurology.

[45]  J. Dowling,et al.  Experimental amblyopia in monkeys. I. Behavioral studies of stimulus deprivation amblyopia. , 1970, Archives of ophthalmology.

[46]  DH Hubel,et al.  Psychophysical evidence for separate channels for the perception of form, color, movement, and depth , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[47]  A Atkin,et al.  Abnormalities of central contrast sensitivity in glaucoma. , 1979, American journal of ophthalmology.

[48]  H. K. Hartline,et al.  THE RESPONSE OF SINGLE OPTIC NERVE FIBERS OF THE VERTEBRATE EYE TO ILLUMINATION OF THE RETINA , 1938 .

[49]  Marc Green,et al.  Visual masking by flickering surrounds , 1983, Vision Research.

[50]  R. Shapley,et al.  Cat and monkey retinal ganglion cells and their visual functional roles , 1986, Trends in Neurosciences.

[51]  D. Hubel,et al.  Plasticity of ocular dominance columns in monkey striate cortex. , 1977, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[52]  Allan J. Pantle,et al.  Temporal determinants of spatial sine-wave masking , 1983, Vision Research.

[53]  C W Tyler,et al.  Specific deficits of flicker sensitivity in glaucoma and ocular hypertension. , 1981, Investigative ophthalmology & visual science.

[54]  William H. Merigan,et al.  Spatio-temporal vision of macaques with severe loss of Pβ retinal ganglion cells , 1986, Vision Research.

[55]  S. Zeki Representation of central visual fields in prestriate cortex of monkey. , 1969, Brain research.

[56]  J A Movshon,et al.  Effects of early unilateral blur on the macaque's visual system. I. Behavioral observations , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.