Acoustic Scattering by Inhomogeneous Obstacles

Acoustic scattering problems are considered when the material parameters (density and speed of sound) are functions of position within a bounded region. An integro-differential equation for the pressure in this region is obtained. It is proved that solving this equation is equivalent to solving the scattering problem. Problems of this kind are often solved by regarding the effects of the inhomogeneity as an unknown source term driving a Helmholtz equation, leading to an equation of Lippmann--Schwinger type. It is shown that this approach is incomplete when the density is discontinuous. Analogous scattering problems for elastic waves and for electromagnetic waves are also discussed briefly.

[1]  Alexander G. Ramm,et al.  Scattering by a penetrable body , 1984 .

[2]  David S. Saxon,et al.  Variational Principles for the Acoustic Field , 1954 .

[3]  F. N. Frenkiel,et al.  Waves In Layered Media , 1960 .

[4]  Steven J Franke,et al.  Three‐dimensional Green’s function for wave propagation in a linearly inhomogeneous medium—the exact analytic solution , 1990 .

[5]  Herbert Koch,et al.  Carleman estimates and unique continuation for second-order elliptic equations with nonsmooth coefficients , 2001 .

[6]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[7]  M. Fink,et al.  Multiple scattering of sound , 2000 .

[8]  W. Macmillan,et al.  The theory of the potential , 1930 .

[9]  A. Wightman,et al.  Mathematical Physics. , 1930, Nature.

[10]  Peter Monk,et al.  Mathematical and Numerical Methods in Inverse Acoustic Scattering Theory , 2001 .

[11]  Weng Cho Chew,et al.  The use of Huygens' equivalence principle for solving 3-D volume integral equation of scattering , 1993 .

[12]  Oscar P. Bruno,et al.  A fast high-order solver for EM scattering from complex penetrable bodies: TE case , 2000 .

[13]  Claus Müller,et al.  On the behavior of the solutions of the differential equation ΔU = F(x,u) in the neighborhood of a point , 1954 .

[14]  J. H. Rose,et al.  Three-dimensional inverse scattering in anisotropic elastic media , 1990 .

[15]  George Weiss,et al.  Integral Equation Methods , 1969 .

[16]  Eytan Domany,et al.  Formal aspects of the theory of the scattering of ultrasound by flaws in elastic materials , 1977 .

[17]  P. Martin,et al.  Acoustic scattering by inhomogeneous spheres. , 2002, The Journal of the Acoustical Society of America.

[18]  J. Ahner,et al.  Scattering by an Inhomogeneous Medium , 1977 .

[19]  J. H. Rose,et al.  Elastodynamic completeness relations for scattered wavefields , 1991 .

[20]  Peter G. Bergmann,et al.  The Wave Equation in a Medium with a Variable Index of Refraction , 1946 .

[21]  J. Willis,et al.  A polarization approach to the scattering of elastic waves—II. Multiple scattering from inclusions , 1980 .

[22]  D. Pearson,et al.  Quantum scattering and spectral theory , 1988 .

[23]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[24]  Peter Werner,et al.  Zur mathematischen theorie akustischer Wellenfelder , 1960 .

[25]  Y. Pao,et al.  Huygens’ principle, radiation conditions, and integral formulas for the scattering of elastic waves , 1976 .

[26]  Claus Müller,et al.  Foundations of the mathematical theory of electromagnetic waves , 1969 .

[27]  Vaughan H. Weston Multifrequency inverse problem for the reduced wave equation with sparse data , 1984 .

[28]  Q.H. Liu,et al.  Fast spectral-domain method for acoustic scattering problems , 2001, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[29]  George W. Kattawar,et al.  Scattering theory of waves and particles (2nd ed.) , 1983 .

[30]  Yu Chen,et al.  A Fast, Direct Algorithm for the Lippmann–Schwinger Integral Equation in Two Dimensions , 2002, Adv. Comput. Math..

[31]  J. Kong,et al.  Scattering of Electromagnetic Waves, Numerical Simulations , 2001 .

[32]  A. Veselov,et al.  Huygens ’ principle , 2002 .

[33]  J. Bladel Singular electromagnetic fields and sources , 1996 .

[34]  J. Willis,et al.  Polarization approach to the scattering of elastic waves—I. Scattering by a single inclusion , 1980 .

[35]  Peter Werner,et al.  Beugungsprobleme der mathematischen Akustik , 1963 .

[36]  R. Newton Scattering theory of waves and particles , 1966 .

[37]  Paul A. Martin,et al.  Boundary integral equations for the scattering of elastic waves by elastic inclusions with thin interface layers , 1992 .

[38]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[39]  Andrew J. Poggio,et al.  CHAPTER 4 – Integral Equation Solutions of Three-dimensional Scattering Problems , 1973 .

[40]  O. D. Kellogg Foundations of potential theory , 1934 .

[41]  Ralph E. Kleinman,et al.  On single integral equations for the transmission problem of acoustics , 1988 .

[42]  J. Schwinger,et al.  Variational Principles for Scattering Processes. I , 1950 .

[43]  R. Kress,et al.  Integral equation methods in scattering theory , 1983 .

[44]  W. Chew Waves and Fields in Inhomogeneous Media , 1990 .

[45]  Emil Wolf,et al.  Scattering states and bound states as solutions of the schrödinger equation with nonlocal boundary conditions , 1976 .

[46]  J. Richardson,et al.  Scattering of elastic waves from symmetric inhomogeneities at low frequencies , 1984 .

[47]  Gregory A. Kriegsmann,et al.  Low Frequency Scattering by Local Inhomogeneities , 1983 .