A user-friendly software for modelling extreme values: EXTRASTAR (EXTRemes Abacus for STAtistical Regionalization)

[1]  Martina Čampulová,et al.  An R package for identification of outliers in environmental time series data , 2022, Environ. Model. Softw..

[2]  Marion Amalric,et al.  Extreme precipitation-based vulnerability assessment of road-crossing drainage structures in forested watersheds using an integrated environmental modeling approach , 2022, Environ. Model. Softw..

[3]  Demetris Koutsoyiannis,et al.  Regional Ombrian Curves: Design Rainfall Estimation for a Spatially Diverse Rainfall Regime , 2022, Hydrology.

[4]  Vijay P. Singh,et al.  Time-varying copula and average annual reliability-based nonstationary hazard assessment of extreme rainfall events , 2021 .

[5]  Sidong Zeng,et al.  Automatic procedure for selecting flood events and identifying flood characteristics from daily streamflow data , 2021, Environ. Model. Softw..

[6]  Fateh Chebana,et al.  Multivariate non-stationary hydrological frequency analysis , 2021 .

[7]  C. Mineo,et al.  Probability distributions of daily rainfall extremes in Lazio and Sicily, Italy, and design rainfall inferences , 2021, Journal of Hydrology: Regional Studies.

[8]  Claudia von Brömssen,et al.  A toolbox for visualizing trends in large-scale environmental data , 2020, Environ. Model. Softw..

[9]  K. S. Kasiviswanathan,et al.  Stationary hydrological frequency analysis coupled with uncertainty assessment under nonstationary scenarios , 2020, Journal of Hydrology.

[10]  S. Fatichi,et al.  A review of studies on observed precipitation trends in Italy , 2020, International Journal of Climatology.

[11]  Demetris Koutsoyiannis,et al.  Projecting the future of rainfall extremes: Better classic than trendy , 2020 .

[12]  B. Moccia,et al.  Spatial variability of precipitation extremes over Italy using a fine-resolution gridded product , 2020, Journal of Hydrology: Regional Studies.

[13]  Demetris Koutsoyiannis,et al.  On the Exact Distribution of Correlated Extremes in Hydrology , 2019, Water Resources Research.

[14]  C. Michele,et al.  Advances in Deriving the Exact Distribution of Maximum Annual Daily Precipitation , 2019, Water.

[15]  Donald H. Burn,et al.  Comparison of Estimation Methods for a Nonstationary Index‐Flood Model in Flood Frequency Analysis Using Peaks Over Threshold , 2019, Water Resources Research.

[16]  A. Mishra,et al.  Nonstationary frequency analysis of the recent extreme precipitation events in the United States , 2019, Journal of Hydrology.

[17]  Q. Wang,et al.  Effect of urbanisation on extreme precipitation based on nonstationary models in the Yangtze River Delta metropolitan region. , 2019, The Science of the total environment.

[18]  Davide Luciano De Luca,et al.  Modelling Climate Changes with Stationary Models: Is It Possible or Is It a Paradox? , 2019, NUMTA.

[19]  Alberto Montanari,et al.  Global and Regional Increase of Precipitation Extremes Under Global Warming , 2019, Water Resources Research.

[20]  S. Beskow,et al.  Artificial intelligence for identifying hydrologically homogeneous regions: A state‐of‐the‐art regional flood frequency analysis , 2019, Hydrological Processes.

[21]  D. D. De Luca,et al.  Stationary and Non-Stationary Frameworks for Extreme Rainfall Time Series in Southern Italy , 2018, Water.

[22]  P. Claps,et al.  Regional-scale analysis of extreme precipitation from short and fragmented records , 2018 .

[23]  Francesco Serinaldi,et al.  Untenable nonstationarity: An assessment of the fitness for purpose of trend tests in hydrology , 2018 .

[24]  Eric Gilleland,et al.  ExtRemes 2.0: An extreme value analysis package in R , 2016 .

[25]  G. Botter,et al.  On the emergence of rainfall extremes from ordinary events , 2016 .

[26]  Slobodan P. Simonovic,et al.  A web-based tool for the development of Intensity Duration Frequency curves under changing climate , 2016, Environ. Model. Softw..

[27]  H. Önsoy,et al.  Regional flood frequency analysis for Çoruh Basin of Turkey with L‐moments approach , 2016 .

[28]  Chong-yu Xu,et al.  Spatio-temporal characteristics of the extreme precipitation by L-moment-based index-flood method in the Yangtze River Delta region, China , 2016, Theoretical and Applied Climatology.

[29]  Demetris Koutsoyiannis,et al.  Negligent killing of scientific concepts: the stationarity case , 2015 .

[30]  M. Ignaccolo,et al.  A metastatistical approach to rainfall extremes , 2015 .

[31]  Paul D. Bates,et al.  Regional flood frequency analysis at the global scale , 2015 .

[32]  Demetris Koutsoyiannis,et al.  Modeling and mitigating natural hazards: Stationarity is immortal! , 2014 .

[33]  A. Aghakouchak,et al.  Nonstationary Precipitation Intensity-Duration-Frequency Curves for Infrastructure Design in a Changing Climate , 2014, Scientific Reports.

[34]  J. Salas,et al.  Revisiting the Concepts of Return Period and Risk for Nonstationary Hydrologic Extreme Events , 2014 .

[35]  Francesco Serinaldi,et al.  Rainfall extremes: Toward reconciliation after the battle of distributions , 2014, Water resources research.

[36]  Holger Rootzén,et al.  Design Life Level: Quantifying risk in a changing climate , 2013 .

[37]  Demetris Koutsoyiannis,et al.  Battle of extreme value distributions: A global survey on extreme daily rainfall , 2013 .

[38]  Ataur Rahman,et al.  Regional flood frequency analysis in eastern Australia: Bayesian GLS regression-based methods within fixed region and ROI framework – Quantile Regression vs. Parameter Regression Technique , 2012 .

[39]  N. Seçkin,et al.  Flood frequency analysis of Turkey using L‐moments method , 2011 .

[40]  Francesco Laio,et al.  Spatially smooth regional estimation of the flood frequency curve (with uncertainty) , 2011 .

[41]  H. Lins,et al.  Stationarity: Wanted Dead or Alive? 1 , 2011 .

[42]  G. La Loggia,et al.  Use of L-Moments Approach for Regional Flood Frequency Analysis in Sicily, Italy , 2009 .

[43]  G. R. Pasha,et al.  Regional Flood Frequency Analysis of the Seven Sites of Punjab, Pakistan, Using L-Moments , 2009 .

[44]  Betül Saf Regional Flood Frequency Analysis Using L-Moments for the West Mediterranean Region of Turkey , 2009 .

[45]  吕一旭 Yixu Lu 引言 (Introduction) , 2009, Provincial China.

[46]  T. Ouarda,et al.  Depth and homogeneity in regional flood frequency analysis , 2008 .

[47]  R. Rigby,et al.  Generalized Additive Models for Location Scale and Shape (GAMLSS) in R , 2007 .

[48]  J. Stedinger,et al.  The use of GLS regression in regional hydrologic analyses , 2007 .

[49]  T. Ouarda,et al.  Multivariate L‐moment homogeneity test , 2007 .

[50]  H. Abida,et al.  Probability distribution of flood flows in Tunisia , 2007 .

[51]  P. Claps,et al.  A comparison of homogeneity tests for regional frequency analysis , 2007 .

[52]  Gwo-Fong Lin,et al.  Identification of homogeneous regions for regional frequency analysis using the self-organizing map , 2006 .

[53]  G. Blöschl,et al.  Top-kriging - geostatistics on stream networks , 2005 .

[54]  M. Borga,et al.  Regional Rainfall Depth–Duration–Frequency Equations for an Alpine Region , 2005 .

[55]  T. Ouarda,et al.  Physiographical space‐based kriging for regional flood frequency estimation at ungauged sites , 2004 .

[56]  Demetris Koutsoyiannis,et al.  Statistics of extremes and estimation of extreme rainfall: II. Empirical investigation of long rainfall records / Statistiques de valeurs extrêmes et estimation de précipitations extrêmes: II. Recherche empirique sur de longues séries de précipitations , 2004 .

[57]  C. De Michele,et al.  On the derived flood frequency distribution: analytical formulation and the influence of antecedent soil moisture condition , 2002 .

[58]  F. Ashkar,et al.  Regional frequency analysis of extreme rainfalls. , 2002, Water science and technology : a journal of the International Association on Water Pollution Research.

[59]  Keith Beven,et al.  Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology , 2001 .

[60]  Mauro Fiorentino,et al.  Derived distribution of floods based on the concept of partial area coverage with a climatic appeal , 2000 .

[61]  D. Burn,et al.  REGIONALIZATION OF CATCHMENTS FOR REGIONAL FLOOD FREQUENCY ANALYSIS , 1997 .

[62]  J. R. Wallis,et al.  Some statistics useful in regional frequency analysis , 1993 .

[63]  Quan J. Wang,et al.  The POT model described by the generalized Pareto distribution with Poisson arrival rate , 1991 .

[64]  Salvatore Gabriele,et al.  A hierarchical approach to regional flood frequency analysis , 1991 .

[65]  M. Schaefer Regional analyses of precipitation annual maxima in Washington State , 1990 .

[66]  Narayanaswamy Balakrishnan,et al.  Means, variances and covariances of order statistics blue's for the type i generalized logistic , 1988 .

[67]  J. Hosking,et al.  Parameter and quantile estimation for the generalized pareto distribution , 1987 .

[68]  J. Hosking,et al.  Comment on “Two‐Component Extreme Value Distribution for Flood Frequency Analysis” by Fabio Rossi, Mauro Florentino, and Pasquale Versace , 1986 .

[69]  J. Stedinger,et al.  Regional Hydrologic Analysis: 1. Ordinary, Weighted, and Generalized Least Squares Compared , 1985 .

[70]  M. Ivette Gomes,et al.  Penultimate limiting forms in extreme value theory , 1984 .

[71]  Mauro Fiorentino,et al.  Two‐Component Extreme Value Distribution for Flood Frequency Analysis , 1984 .

[72]  B. Bobée,et al.  The Log Pearson type 3 distribution and its application in hydrology , 1975 .

[73]  E. Zelenhasić,et al.  A Stochastic Model for Flood Analysis , 1970 .

[74]  P. Todorovic,et al.  On Some Problems Involving Random Number of Random Variables , 1970 .

[75]  A. Jenkinson The frequency distribution of the annual maximum (or minimum) values of meteorological elements , 1955 .

[76]  H. B. Mann Nonparametric Tests Against Trend , 1945 .

[77]  G. Birkhoff Proof of the Ergodic Theorem , 1931, Proceedings of the National Academy of Sciences.