Nonlocal kinetic energy functionals in real space using a Yukawa-potential kernel: Properties, linear response, and model functionals

[1]  F. Della Sala,et al.  Frozen density embedding with hybrid functionals. , 2010, The Journal of chemical physics.

[2]  Hongxing Xu,et al.  Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics , 2014, Nature Communications.

[3]  M. Bonitz,et al.  Collective excitations of a spherically confined Yukawa plasma. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  A. Cancio,et al.  Visualization and analysis of the Kohn-Sham kinetic energy density and its orbital-free description in molecules. , 2015, The Journal of chemical physics.

[5]  Enrique Chacón,et al.  Nonlocal symmetrized kinetic-energy density functional: Application to simple surfaces , 1998 .

[6]  E. V. Ludeña,et al.  The Liu‐Parr power series expansion of the Pauli kinetic energy functional with the incorporation of shell‐inducing traits: Atoms , 2018 .

[7]  C. Herring Explicit estimation of ground-state kinetic energies from electron densities. , 1986, Physical review. A, General physics.

[9]  E. Carter,et al.  Reply to “Comment on ‘Single-point kinetic energy density functionals: A pointwise kinetic energy density analysis and numerical convergence investigation’ ” , 2015 .

[10]  Xuecheng Shao,et al.  DFTpy: An efficient and object‐oriented platform for orbital‐free DFT simulations , 2020, WIREs Computational Molecular Science.

[11]  F. Della Sala,et al.  Laplacian-dependent models of the kinetic energy density: Applications in subsystem density functional theory with meta-generalized gradient approximation functionals. , 2017, The Journal of chemical physics.

[12]  Vincent L. Lignères,et al.  Improving the orbital-free density functional theory description of covalent materials. , 2005, The Journal of chemical physics.

[13]  Tomasz A Wesolowski,et al.  Frozen-Density Embedding Strategy for Multilevel Simulations of Electronic Structure. , 2015, Chemical reviews.

[14]  Bo Zhang,et al.  FMM-Yukawa: An adaptive fast multipole method for screened Coulomb interactions , 2009, Comput. Phys. Commun..

[15]  M. Pavanello,et al.  Orbital-free density functional theory correctly models quantum dots when asymptotics, nonlocality, and nonhomogeneity are accounted for , 2018, Physical Review B.

[16]  K. Burke,et al.  Condition on the Kohn-Sham kinetic energy and modern parametrization of the Thomas-Fermi density. , 2008, The Journal of chemical physics.

[17]  F. Della Sala,et al.  Performance of Semilocal Kinetic Energy Functionals for Orbital-Free Density Functional Theory. , 2019, Journal of chemical theory and computation.

[18]  A. Cancio,et al.  Visualisation and orbital-free parametrisation of the large-Z scaling of the kinetic energy density of atoms , 2016, 1605.07751.

[19]  J. Weeks,et al.  Orbital-free density functional theory: Kinetic potentials and ab initio local pseudopotentials , 2007, 0704.1878.

[20]  R. Kjellander Nonlocal electrostatics in ionic liquids: The key to an understanding of the screening decay length and screened interactions. , 2016, The Journal of chemical physics.

[21]  Christoph R. Jacob,et al.  Subsystem density‐functional theory , 2014 .

[22]  Samuel B. Trickey,et al.  Issues and challenges in orbital-free density functional calculations , 2011, Comput. Phys. Commun..

[23]  L. Constantin,et al.  Nonlocal kinetic energy functional from the jellium-with-gap model: Applications to orbital-free density functional theory , 2018, Physical Review B.

[24]  Balachandran Radhakrishnan,et al.  Effect of cell size on the energetics of vacancies in aluminum studied via orbital-free density functional theory , 2010 .

[25]  M. Pavanello,et al.  Nonlocal kinetic energy functionals by functional integration. , 2017, The Journal of chemical physics.

[26]  Chacón,et al.  Kinetic-energy density functional: Atoms and shell structure. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[27]  Emily A. Carter,et al.  Nonlocal orbital-free kinetic energy density functional for semiconductors , 2010 .

[28]  Thakkar Comparison of kinetic-energy density functionals. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[29]  D. Neuhauser,et al.  Hydrodynamic tensor density functional theory with correct susceptibility. , 2007, The Journal of chemical physics.

[30]  T. Ramazanov,et al.  Theoretical foundations of quantum hydrodynamics for plasmas , 2017, 1709.02196.

[31]  Lucian A. Constantin,et al.  Kinetic and Exchange Energy Densities near the Nucleus , 2016, Comput..

[32]  A. Lembarki,et al.  Obtaining a gradient-corrected kinetic-energy functional from the Perdew-Wang exchange functional. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[33]  R. Resta Thomas-Fermi dielectric screening in semiconductors , 1977 .

[34]  F. Perrot Hydrogen-hydrogen interaction in an electron gas , 1994 .

[35]  M. Pavanello,et al.  Subsystem density-functional theory as an effective tool for modeling ground and excited states, their dynamics and many-body interactions , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[36]  Vikram Gavini,et al.  Higher-order adaptive finite-element methods for Kohn-Sham density functional theory , 2012, J. Comput. Phys..

[37]  Johannes M. Dieterich,et al.  Orbital-free density functional theory for materials research , 2018 .

[38]  L. Constantin Semilocal properties of the Pauli kinetic potential , 2019, Physical Review B.

[39]  P. Blaha,et al.  Implementation of screened hybrid functionals based on the Yukawa potential within the LAPW basis set , 2011, 1103.4466.

[40]  J. Alvarellos,et al.  Approach to kinetic energy density functionals: Nonlocal terms with the structure of the von Weizsäcker functional , 2008 .

[41]  C. Ciracì,et al.  Quantum Hydrodynamic Theory for Plasmonics: Impact of the Electron Density Tail , 2016, 1601.01584.

[42]  H. M. Baghramyan,et al.  Laplacian-Level Quantum Hydrodynamic Theory for Plasmonics , 2020, 2006.03973.

[43]  F. Della Sala,et al.  Generalized Gradient Approximations of the Noninteracting Kinetic Energy from the Semiclassical Atom Theory: Rationalization of the Accuracy of the Frozen Density Embedding Theory for Nonbonded Interactions. , 2011, Journal of chemical theory and computation.

[44]  Wang,et al.  Kinetic-energy functional of the electron density. , 1992, Physical review. B, Condensed matter.

[45]  Lucian A. Constantin,et al.  The Role of the Reduced Laplacian Renormalization in the Kinetic Energy Functional Development , 2019, Comput..

[46]  L. Visscher,et al.  Is it worthwhile to go beyond the local‐density approximation in subsystem density functional theory? , 2020 .

[47]  L. Constantin,et al.  Relevance of coordinate and particle-number scaling in density-functional theory , 2013, 1301.4040.

[48]  Johannes Neugebauer,et al.  Chromophore-specific theoretical spectroscopy: From subsystem density functional theory to mode-specific vibrational spectroscopy , 2010 .

[49]  Lucas Visscher,et al.  Performance of Kinetic Energy Functionals for Interaction Energies in a Subsystem Formulation of Density Functional Theory. , 2009, Journal of chemical theory and computation.

[50]  Kaushik Bhattacharya,et al.  Quasi-continuum orbital-free density-functional theory : A route to multi-million atom non-periodic DFT calculation , 2007 .

[51]  D. Tozer,et al.  Density Scaling of Noninteracting Kinetic Energy Functionals. , 2013, Journal of chemical theory and computation.

[52]  S. Trickey,et al.  Nonempirical generalized gradient approximation free-energy functional for orbital-free simulations , 2013, 1308.2193.

[53]  Phanish Suryanarayana,et al.  Higher-order finite-difference formulation of periodic Orbital-free Density Functional Theory , 2014, J. Comput. Phys..

[54]  Efthimios Kaxiras,et al.  Kinetic energy density functionals for non-periodic systems , 2002 .

[55]  Tomasz Adam Wesolowski,et al.  Link between the Kinetic- and Exchange-Energy Functionals in the Generalized Gradient Approximation , 2002 .

[56]  Emily A. Carter,et al.  Introducing PROFESS: A new program for orbital-free density functional theory calculations , 2008, Comput. Phys. Commun..

[57]  Comment on “Single-point kinetic energy density functionals: A pointwise kinetic energy density analysis and numerical convergence investigation” , 2015 .

[58]  F. Della Sala,et al.  Laplacian-Level Kinetic Energy Approximations Based on the Fourth-Order Gradient Expansion: Global Assessment and Application to the Subsystem Formulation of Density Functional Theory. , 2014, Journal of chemical theory and computation.

[59]  J. Perdew,et al.  Nonempirical density functionals investigated for jellium: Spin polarized surfaces, spherical clusters, and bulk linear response , 2008, 0804.1526.

[60]  E. Carter,et al.  Single-point kinetic energy density functionals: A pointwise kinetic energy density analysis and numerical convergence investigation , 2015 .

[61]  Chacón,et al.  Nonlocal kinetic-energy-density functionals. , 1996, Physical review. B, Condensed matter.

[62]  L. Constantin,et al.  Jellium-with-gap model applied to semilocal kinetic functionals , 2017, 1705.06034.

[64]  Semilocal kinetic energy functionals with parameters from neutral atoms , 2019, Physical Review B.

[65]  Lévy,et al.  Exact properties of the Pauli potential for the square root of the electron density and the kinetic energy functional. , 1988, Physical review. A, General physics.

[66]  F. Della Sala,et al.  Modified Fourth-Order Kinetic Energy Gradient Expansion with Hartree Potential-Dependent Coefficients. , 2017, Journal of chemical theory and computation.

[67]  N. Govind,et al.  Orbital-free kinetic-energy density functionals with a density-dependent kernel , 1999 .

[68]  Junji Seino,et al.  Semi-local machine-learned kinetic energy density functional with third-order gradients of electron density. , 2018, The Journal of chemical physics.

[69]  F. Della Sala,et al.  Subsystem density functional theory with meta-generalized gradient approximation exchange-correlation functionals. , 2015, The Journal of chemical physics.

[70]  F. Della Sala,et al.  Semilocal Pauli-Gaussian Kinetic Functionals for Orbital-Free Density Functional Theory Calculations of Solids. , 2018, The journal of physical chemistry letters.

[71]  L. Constantin,et al.  Kohn-Sham kinetic energy density in the nuclear and asymptotic regions: Deviations from the von Weizsäcker behavior and applications to density functionals , 2014, 1411.3804.

[72]  Frank E. Harris,et al.  Properties of constraint-based single-point approximate kinetic energy functionals , 2008, 0809.4798.

[73]  A. Brigo,et al.  The Poisson–Boltzmann equation for biomolecular electrostatics: a tool for structural biology , 2002, Journal of molecular recognition : JMR.

[74]  F. Della Sala,et al.  Hartree potential dependent exchange functional. , 2016, The Journal of chemical physics.

[75]  Ilgyou Shin,et al.  Enhanced von Weizsäcker Wang-Govind-Carter kinetic energy density functional for semiconductors. , 2014, The Journal of chemical physics.

[76]  K. Finzel Shell-structure-based functionals for the kinetic energy , 2015, Theoretical Chemistry Accounts.

[77]  E. V. Ludeña,et al.  Study of Some Simple Approximations to the Non-Interacting Kinetic Energy Functional , 2016, 1601.01721.

[78]  F. Della Sala,et al.  Semiclassical neutral atom as a reference system in density functional theory. , 2011, Physical review letters.

[79]  J. Alvarellos,et al.  Fully nonlocal kinetic energy density functionals: a proposal and a general assessment for atomic systems. , 2008, The Journal of chemical physics.

[80]  Emily A. Carter,et al.  Orbital-free kinetic-energy functionals for the nearly free electron gas , 1998 .

[81]  Vincent L. Lignères,et al.  Analytic form for a nonlocal kinetic energy functional with a density-dependent kernel for orbital-free density functional theory under periodic and Dirichlet boundary conditions , 2008 .

[82]  S. Trickey,et al.  A simple generalized gradient approximation for the noninteracting kinetic energy density functional , 2018, Physical Review B.

[83]  L. Constantin,et al.  Kinetic‐energy‐density dependent semilocal exchange‐correlation functionals , 2016 .

[84]  Laplacian-level density functionals for the kinetic energy density and exchange-correlation energy , 2006, cond-mat/0612430.

[85]  K. Finzel Local conditions for the Pauli potential in order to yield self-consistent electron densities exhibiting proper atomic shell structure. , 2016, The Journal of chemical physics.

[86]  Smargiassi,et al.  Orbital-free kinetic-energy functionals for first-principles molecular dynamics. , 1994, Physical review. B, Condensed matter.