Toward a distributed free-floating wireless implantable neural recording system

To understand the complex correlations between neural networks across different regions in the brain and their functions at high spatiotemporal resolution, a tool is needed for obtaining long-term single unit activity (SUA) across the entire brain area. The concept and preliminary design of a distributed free-floating wireless implantable neural recording (FF-WINeR) system are presented, which can enabling SUA acquisition by dispersedly implanting tens to hundreds of untethered 1 mm3 neural recording probes, floating with the brain and operating wirelessly across the cortical surface. For powering FF-WINeR probes, a 3-coil link with an intermediate high-Q resonator provides a minimum S21 of -22.22 dB (in the body medium) and -21.23 dB (in air) at 2.8 cm coil separation, which translates to 0.76%/759 μW and 0.6%/604 μW of power transfer efficiency (PTE) / power delivered to a 9 kΩ load (PDL), in body and air, respectively. A mock-up FF-WINeR is implemented to explore microassembly method of the 1×1 mm2 micromachined silicon die with a bonding wire-wound coil and a tungsten micro-wire electrode. Circuit design methods to fit the active circuitry in only 0.96 mm2 of die area in a 130 nm standard CMOS process, and satisfy the strict power and performance requirements (in simulations) are discussed.

[1]  Jan M. Rabaey,et al.  A Fully-Integrated, Miniaturized (0.125 mm²) 10.5 µW Wireless Neural Sensor , 2013, IEEE Journal of Solid-State Circuits.

[2]  Maysam Ghovanloo,et al.  A Triple-Loop Inductive Power Transmission System for Biomedical Applications , 2016, IEEE Transactions on Biomedical Circuits and Systems.

[3]  Maysam Ghovanloo,et al.  Optimal Design of Wireless Power Transmission Links for Millimeter-Sized Biomedical Implants , 2016, IEEE Transactions on Biomedical Circuits and Systems.

[4]  Nicolas Y. Masse,et al.  Reach and grasp by people with tetraplegia using a neurally controlled robotic arm , 2012, Nature.

[5]  Elad Alon,et al.  Neural Dust: An Ultrasonic, Low Power Solution for Chronic Brain-Machine Interfaces , 2013, 1307.2196.

[6]  D. Szarowski,et al.  Cerebral Astrocyte Response to Micromachined Silicon Implants , 1999, Experimental Neurology.

[7]  Giovanni Puccetti,et al.  Experimental and Numerical Investigation of Termination Impedance Effects in Wireless Power Transfer via Metamaterial , 2015 .

[8]  Sang-Hoon Lee,et al.  Self-Adhesive and Capacitive Carbon Nanotube-Based Electrode to Record Electroencephalograph Signals From the Hairy Scalp , 2016, IEEE Transactions on Biomedical Engineering.

[9]  Ying Yao,et al.  An Implantable 64-Channel Wireless Microsystem for Single-Unit Neural Recording , 2009, IEEE Journal of Solid-State Circuits.

[10]  R. Yuste,et al.  The Brain Activity Map Project and the Challenge of Functional Connectomics , 2012, Neuron.

[11]  Miguel A. L. Nicolelis,et al.  Actions from thoughts , 2001, Nature.

[12]  Jan M. Rabaey,et al.  A Minimally Invasive 64-Channel Wireless μECoG Implant , 2015, IEEE Journal of Solid-State Circuits.

[13]  Maysam Ghovanloo,et al.  Design and Optimization of a 3-Coil Inductive Link for Efficient Wireless Power Transmission , 2011, IEEE Transactions on Biomedical Circuits and Systems.