Finite Difference schemes on non-Uniform meshes for Hyperbolic Conservation Laws
暂无分享,去创建一个
[1] Argiris I. Delis,et al. Behavior of Finite Volume Schemes for Hyperbolic Conservation Laws on Adaptive Redistributed Spatial Grids , 2006, SIAM J. Sci. Comput..
[2] P. Lax,et al. Systems of conservation laws , 1960 .
[3] C. Makridakis,et al. Adaptive finite element relaxation schemes for hyperbolic conservation laws , 2001 .
[4] Eitan Tadmor,et al. The numerical viscosity of entropy stable schemes for systems of conservation laws. I , 1987 .
[5] E. Tadmor. Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems , 2003, Acta Numerica.
[6] J. W. Thomas. Numerical Partial Differential Equations: Finite Difference Methods , 1995 .
[7] J. W. Thomas. Numerical Partial Differential Equations , 1999 .
[8] R. LeVeque. Numerical methods for conservation laws , 1990 .
[9] A. Bressan. Hyperbolic Systems of Conservation Laws , 1999 .
[10] G. Hedstrom. Models of difference schemes for _{}+ₓ=0 by partial differential equations , 1975 .
[11] B. Fornberg. Generation of finite difference formulas on arbitrarily spaced grids , 1988 .
[12] Ami Harten,et al. Self adjusting grid methods for one-dimensional hyperbolic conservation laws☆ , 1983 .
[13] Richard Courant,et al. Supersonic Flow And Shock Waves , 1948 .
[14] R. LeVeque. Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .
[15] J. Smoller. Shock Waves and Reaction-Diffusion Equations , 1983 .
[16] By G. W. Hedstrom. Models of Difference Schemes for Ut + ux = 0 by Partial Differential Equations * , 2010 .
[17] Charalambos Makridakis,et al. Stability and Convergence of a Class of Finite Element Schemes for Hyperbolic Systems of Conservation Laws , 2004, SIAM J. Numer. Anal..
[18] C. W. Hirt. Heuristic stability theory for finite-difference equations☆ , 1968 .
[19] O. Oleinik. Discontinuous solutions of non-linear differential equations , 1963 .
[20] D. Kröner. Numerical Schemes for Conservation Laws , 1997 .
[21] R. F. Warming,et al. The modified equation approach to the stability and accuracy analysis of finite-difference methods , 1974 .
[22] Christos Arvanitis. Mesh Redistribution Strategies and Finite Element Schemes for Hyperbolic Conservation Laws , 2008, J. Sci. Comput..
[23] N. Sfakianakis,et al. Adaptive mesh reconstruction: Total Variation Bound , 2009, 0908.4402.
[24] E. Dorfi,et al. Simple adaptive grids for 1-d initial value problems , 1987 .
[25] Tao Tang,et al. Adaptive Mesh Methods for One- and Two-Dimensional Hyperbolic Conservation Laws , 2003, SIAM J. Numer. Anal..
[26] Philippe G. LeFloch,et al. High-Order Schemes, Entropy Inequalities, and Nonclassical Shocks , 2000, SIAM J. Numer. Anal..
[27] M. Falcone,et al. Numerical schemes for conservation laws via Hamilton-Jacobi equations , 1995 .
[28] Charalambos Makridakis,et al. ENTROPY CONSERVATIVE SCHEMES AND ADAPTIVE MESH SELECTION FOR HYPERBOLIC CONSERVATION LAWS , 2010 .
[29] P. Lax. Weak solutions of nonlinear hyperbolic equations and their numerical computation , 1954 .
[30] R. D. Richtmyer,et al. Survey of the stability of linear finite difference equations , 1956 .
[31] P. Lax. Hyperbolic systems of conservation laws , 2006 .