Socio-ecological impact of monogenetic volcanism in the La Garrotxa Volcanic Field (NE Iberia)

[1]  M. Ebner,et al.  Palaeoecological signals for Mesolithic land use in a Central European landscape? , 2022, Journal of Quaternary Science.

[2]  W. Tinner,et al.  Long-Term Responses of Mediterranean Mountain Forests to Climate Change, Fire and Human Activities in the Northern Apennines (Italy) , 2020, Ecosystems.

[3]  G. Giordano,et al.  The Magnitude of the 39.8 ka Campanian Ignimbrite Eruption, Italy: Method, Uncertainties and Errors , 2020, Frontiers in Earth Science.

[4]  F. Di Traglia Hydrogeomorphic and sedimentary response to the Late Pleistocene violent Strombolian eruption of the Croscat volcano (Garrotxa Volcanic Field, Spain) , 2020, Mediterranean Geoscience Reviews.

[5]  E. Gross,et al.  Ecology and Environmental Impact of Myriophyllum heterophyllum, an Aggressive Invader in European Waterways , 2020, Diversity.

[6]  J. Pedraza,et al.  Late Glacial-early holocene vegetation and environmental changes in the western Iberian Central System inferred from a key site: The Navamuño record, Béjar range (Spain) , 2020 .

[7]  K. Rehfeld,et al.  Holocene fire activity during low-natural flammability periods reveals scale-dependent cultural human-fire relationships in Europe , 2018, Quaternary Science Reviews.

[8]  E. Liu,et al.  The timing and widespread effects of the largest Holocene volcanic eruption in Antarctica , 2018, Scientific Reports.

[9]  A. Ribolini,et al.  Fire on ice and frozen trees? Inappropriate radiocarbon dating leads to unrealistic reconstructions. , 2018, The New phytologist.

[10]  B. Huntley,et al.  Effects of tephra falls on vegetation: A Late‐Quaternary record from southern Italy , 2018, Journal of Ecology.

[11]  F. Riede Doing palaeo-social volcanology: Developing a framework for systematically investigating the impacts of past volcanic eruptions on human societies using archaeological datasets , 2018, Quaternary International.

[12]  C. Cooper,et al.  Evaluating the relationship between climate change and volcanism , 2018 .

[13]  E. Iriarte,et al.  Human-environment interaction during the Mesolithic- Neolithic transition in the NE Iberian Peninsula. Vegetation history, climate change and human impact during the Early-Middle Holocene in the Eastern Pre-Pyrenees , 2017 .

[14]  Martin Solich,et al.  Socioeconomic complexity and the resilience of hunter-gatherer societies , 2017 .

[15]  J. Gibaja,et al.  Mesolithic-Neolithic transition in the northeast of Iberia: Chronology and socioeconomic dynamics , 2017 .

[16]  T. Mather,et al.  Mercury evidence for pulsed volcanism during the end-Triassic mass extinction , 2017, Proceedings of the National Academy of Sciences.

[17]  F. Burjachs,et al.  Interdisciplinary approach to the landscape and firewood exploitation during the Holocene at La Garrotxa (Girona, NE Iberia) , 2017 .

[18]  J. Corella,et al.  Environmental and climate change in the southern Central Pyrenees since the Last Glacial Maximum: A view from the lake records , 2017 .

[19]  B. Geel,et al.  Human impact and ecological changes in lakeshore environments. The contribution of non-pollen palynomorphs in Lake Banyoles (NE Iberia) , 2016 .

[20]  J. Martí,et al.  Reconstructing the eruptive history of a monogenetic volcano through a combination of fieldwork and geophysical surveys: the example of Puig d’Àdri (Garrotxa Volcanic Field) , 2016, Journal of the Geological Society.

[21]  F. Riede Changes in mid- and far-field human landscape use following the Laacher See eruption (c. 13,000 BP) , 2016 .

[22]  R. Torrence Social resilience and long-term adaptation to volcanic disasters: The archaeology of continuity and innovation in the Willaumez Peninsula, Papua New Guinea , 2016 .

[23]  M. Märker,et al.  From a stratigraphic sequence to a landscape evolution model: Late Pleistocene and Holocene volcanism, soil formation and land use in the shade of Mount Vesuvius (Italy) , 2016 .

[24]  B. Geel,et al.  Pollen and non-pollen palynomorphs from the Early Neolithic settlement of La Draga (Girona, Spain) , 2016 .

[25]  Richard J. Brown,et al.  Was millennial scale climate change during the Last Glacial triggered by explosive volcanism? , 2015, Scientific Reports.

[26]  E. Iriarte,et al.  Mid-Holocene vegetation history and Neolithic land-use in the Lake Banyoles area (Girona, Spain) , 2015 .

[27]  D. Heslop,et al.  Prediction of Geochemical Composition from XRF Core Scanner Data: A New Multivariate Approach Including Automatic Selection of Calibration Samples and Quantification of Uncertainties , 2015 .

[28]  J. Martí,et al.  Volcano-structural analysis of La Garrotxa Volcanic Field (NE Iberia): Implications for the plumbing system , 2015 .

[29]  A. Correa-Metrio,et al.  Last Glacial droughts and fire regimes in the central Mexican highlands , 2015 .

[30]  H. Fischer,et al.  A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy , 2014 .

[31]  C. Buizert,et al.  Consistently dated records from the Greenland GRIP, GISP2 and NGRIP ice cores for the past 104 ka reveal regional millennial-scale δ18O gradients with possible Heinrich event imprint , 2014 .

[32]  J. Martí,et al.  Volcanic stratigraphy of the Quaternary La Garrotxa Volcanic Field (north‐east Iberian Peninsula) , 2014 .

[33]  J. Martí,et al.  Geophysical exploration on the subsurface geology of La Garrotxa monogenetic volcanic field (NE Iberian Peninsula) , 2014, International Journal of Earth Sciences.

[34]  R. Kelly,et al.  A guide to screening charcoal peaks in macrocharcoal-area records for fire-episode reconstructions , 2014 .

[35]  B. Valero-Garcés,et al.  Biomass-modulated fire dynamics during the last glacial-interglacial transition at the central pyrenees (Spain) , 2014 .

[36]  C. Cimarelli,et al.  Space–time evolution of monogenetic volcanism in the mafic Garrotxa Volcanic Field (NE Iberian Peninsula) , 2013, Bulletin of Volcanology.

[37]  A. Pèlachs,et al.  Paleogeografía humana durante el Tardiglaciar y Holoceno inicial en el ámbito mediterráneo del NE Ibérico , 2012 .

[38]  I. Expósito,et al.  14C dating of the last Croscat volcano eruption (Garrotxa Region, NE Iberian Peninsula) , 2012 .

[39]  Gerd-Christian Weniger,et al.  The repeated replacement model – Rapid climate change and population dynamics in Late Pleistocene Europe , 2012 .

[40]  J. Christen,et al.  Flexible paleoclimate age-depth models using an autoregressive gamma process , 2011 .

[41]  Marc Comas Cufí,et al.  CoDaPack 2.0: a stand-alone, Multi-platform Compositional Software , 2011 .

[42]  J. Martí,et al.  Complex interaction between Strombolian and phreatomagmatic eruptions in the Quaternary monogenetic volcanism of the Catalan Volcanic Zone (NE of Spain) , 2011 .

[43]  G. Brundu,et al.  Emerging invasive alien plants for the Mediterranean BasinBrundu3, G. Fried4 , 2010 .

[44]  A. Robock,et al.  Did the Toba volcanic eruption of 74 ka B.P. produce widespread glaciation , 2009 .

[45]  J. Fernández-Turiel,et al.  Eruptive mechanisms of the Puig De La Garrinada volcano (Olot, Garrotxa volcanic field, Northeastern Spain): A methodological study based on proximal pyroclastic deposits , 2009 .

[46]  G. Weltje,et al.  Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: Theory and application , 2008 .

[47]  S. Juggins,et al.  Physical and chemical predictors of diatom dissolution in freshwater and saline lake sediments in North America and West Greenland , 2006 .

[48]  J. García‐Ruiz,et al.  Glacial and Lateglacial vegetation in northeastern Spain: New data and a review , 2005 .

[49]  G. Keller Impacts, volcanism and mass extinction: random coincidence or cause and effect? , 2005 .

[50]  A. Aptroot,et al.  Environmental reconstruction of a Roman Period settlement site in Uitgeest (The Netherlands), with special reference to coprophilous fungi , 2003 .

[51]  J. Innes,et al.  The ecology of Late Mesolithic woodland disturbances: Model testing with fungal spore assemblage data , 2003 .

[52]  J. Russell,et al.  Classification of lacustrine sediments based on sedimentary components , 2003 .

[53]  Yves Bergeron,et al.  Change of fire frequency in the eastern Canadian boreal forests during the Holocene: does vegetation composition or climate trigger the fire regime? , 2001 .

[54]  A. Robock Volcanic eruptions and climate , 2000 .

[55]  R. Stothers Volcanic Dry Fogs, Climate Cooling, and Plague Pandemics in Europe and the Middle East , 1999 .

[56]  Heidi Cullen,et al.  A Pervasive Millennial-Scale Cycle in North Atlantic Holocene and Glacial Climates , 1997 .

[57]  M. McCormick,et al.  Atmospheric effects of the Mt Pinatubo eruption , 1995, Nature.

[58]  Albert Ammerman,et al.  Bad Year Economics: Cultural responses to risk and uncertainty , 1992 .

[59]  J. Martí,et al.  Cenozoic magmatism of the valencia trough (western mediterranean): Relationship between structural evolution and volcanism∗ , 1992 .

[60]  J. Clark Particle Motion and the Theory of Charcoal Analysis: Source Area, Transport, Deposition, and Sampling , 1988, Quaternary Research.

[61]  B. Geel,et al.  RECONSTRUCTION AND INTERPRETATION OF THE LOCAL VEGETATIONAL SUCCESSION OF A LATEGLACIAL DEPOSIT FROM USSELO (THE NETHERLANDS), BASED ON THE ANALYSIS OF MICRO- AND MACROFOSSILS , 1984 .

[62]  Haraldur Sigurdsson,et al.  The Eruption of Vesuvius in A.D. 79: Reconstruction from Historical and Volcanological Evidence , 1982, American Journal of Archaeology.

[63]  K. Petersen,et al.  Pollen Influx and Volcanic Ash , 1977, Science.

[64]  J. Martí,et al.  The Neogene-Quaternary Alkaline Volcanism of Iberia , 2019, The Geology of Iberia: A Geodynamic Approach.

[65]  J. Driessen Crisis to Collapse. The Archaeology of Social Breakdown , 2017 .

[66]  J. Catalán,et al.  Diatom diversity in the lakes of the Pyrenees: an iconographic reference , 2017 .

[67]  P. Bartlein,et al.  Peak detection in sediment–charcoal records: impacts of alternative data analysis methods on fire-history interpretations , 2010 .

[68]  J. Suc,et al.  Pollen et spores d'europe et d'afrique du nord , 1996 .

[69]  H. J. B. Birks,et al.  The impact of the Laacher See Volcano (11 000 yr B.P.) on terrestrial vegetation and diatoms , 1994 .

[70]  Antoni Palomo,et al.  La intervenció arqueològica d'urgència en el jaciment a l'aire lliure de la Rodona (Olot, Garrotxa) , 1994 .

[71]  Kurt Krammer,et al.  Centrales, fragilariaceae, eunotiaceae , 1991 .

[72]  Robin P. Fawcett,et al.  Theory and application , 1988 .

[73]  R. Perez-Obiol Histoire Tardiglaciaire et Holocène de la végétation de la région volcanique d'Olot (N.E. Péninsule Ibérique) , 1988 .

[74]  E. Carbonell,et al.  Anàlisi espacial d`un campament prehistòric del Post-Glacial. Sota Palou (Campdevànol) , 1985 .

[75]  B. Geel A palaeoecological study of holocene peat bog sections in Germany and The Netherlands, based on the analysis of pollen, spores and macro- and microscopic remains of fungi, algae, cormophytes and animals , 1978 .