WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system

The CRISPR/Cas9 system has been rapidly adopted for genome editing. However, one major issue with this system is the lack of robust bioinformatics tools for design of single guide RNA (sgRNA), which determines the efficacy and specificity of genome editing. To address this pressing need, we analyze CRISPR RNA-seq data and identify many novel features that are characteristic of highly potent sgRNAs. These features are used to develop a bioinformatics tool for genome-wide design of sgRNAs with improved efficiency. These sgRNAs as well as the design tool are freely accessible via a web server, WU-CRISPR (http://crispr.wustl.edu).

[1]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[2]  David A. Scott,et al.  Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity , 2013, Cell.

[3]  Jong-il Kim,et al.  Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells , 2015, Nature Methods.

[4]  Meagan E. Sullender,et al.  Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation , 2014, Nature Biotechnology.

[5]  Dang D. Long,et al.  Potent effect of target structure on microRNA function , 2007, Nature Structural &Molecular Biology.

[6]  Y. Li,et al.  Incorporating structure to predict microRNA targets. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[7]  David A. Scott,et al.  Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells , 2014, Nature Biotechnology.

[8]  David Haussler,et al.  The UCSC Genome Browser database: 2014 update , 2013, Nucleic Acids Res..

[9]  J. Vogel,et al.  CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III , 2011, Nature.

[10]  Martin J. Aryee,et al.  GUIDE-Seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases , 2014, Nature Biotechnology.

[11]  Neville E. Sanjana,et al.  Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells , 2014, Science.

[12]  Fangting Wu,et al.  Targeting non-coding RNAs with the CRISPR/Cas9 system in human cell lines , 2014, Nucleic acids research.

[13]  M. Boutros,et al.  E-CRISP: fast CRISPR target site identification , 2014, Nature Methods.

[14]  George M. Church,et al.  CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing , 2014, Nucleic Acids Res..

[15]  Hidemasa Bono,et al.  CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites , 2014, Bioinform..

[16]  Jennifer Doudna,et al.  RNA-programmed genome editing in human cells , 2013, eLife.

[17]  David R. Liu,et al.  High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity , 2013, Nature Biotechnology.

[18]  L. Zhu,et al.  CRISPRseek: A Bioconductor Package to Identify Target-Specific Guide RNAs for CRISPR-Cas9 Genome-Editing Systems , 2014, PloS one.

[19]  Eli J. Fine,et al.  DNA targeting specificity of RNA-guided Cas9 nucleases , 2013, Nature Biotechnology.

[20]  L. Marraffini,et al.  CRISPR Interference Limits Horizontal Gene Transfer in Staphylococci by Targeting DNA , 2008, Science.

[21]  Yilong Li,et al.  Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library , 2013, Nature Biotechnology.

[22]  Jeffry D. Sander,et al.  Efficient In Vivo Genome Editing Using RNA-Guided Nucleases , 2013, Nature Biotechnology.

[23]  Gregory D. Schuler,et al.  Database resources of the National Center for Biotechnology Information: update , 2004, Nucleic acids research.

[24]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[25]  Clifford A. Meyer,et al.  Sequence determinants of improved CRISPR sgRNA design , 2015, Genome research.

[26]  E. Lander,et al.  Genetic Screens in Human Cells Using the CRISPR-Cas9 System , 2013, Science.

[27]  Stan J. J. Brouns,et al.  Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes , 2008, Science.

[28]  G. Church,et al.  CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering , 2013, Nature Biotechnology.

[29]  J. Doudna,et al.  The new frontier of genome engineering with CRISPR-Cas9 , 2014, Science.

[30]  Tessa G. Montague,et al.  Efficient Mutagenesis by Cas9 Protein-Mediated Oligonucleotide Insertion and Large-Scale Assessment of Single-Guide RNAs , 2014, PloS one.

[31]  Ivo L. Hofacker,et al.  Vienna RNA secondary structure server , 2003, Nucleic Acids Res..

[32]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[33]  R. Barrangou,et al.  CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes , 2007, Science.

[34]  G. Church,et al.  Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach , 2015, Nature Methods.

[35]  J Keith Joung,et al.  Genome Editing: A Tool For Research and Therapy: Towards a functional understanding of variants for molecular diagnostics using genome editing , 2014, Nature Medicine.

[36]  Xiaohui Wang,et al.  Selection of hyperfunctional siRNAs with improved potency and specificity , 2009, Nucleic acids research.