Shape and size controlled alpha-Fe₂O₃ nanoparticles as supports for gold-catalysts: Synthesis and influence of support shape and size on catalytic performance

[1]  M. Flytzani-Stephanopoulos,et al.  Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction. , 2008, Angewandte Chemie.

[2]  Xianluo Hu,et al.  α‐Fe2O3 Nanorings Prepared by a Microwave‐Assisted Hydrothermal Process and Their Sensing Properties , 2007 .

[3]  A. Gedanken,et al.  Synthesis of Porous α-Fe2O3 Nanorods and Deposition of Very Small Gold Particles in the Pores for Catalytic Oxidation of CO , 2007 .

[4]  G. Bond,et al.  Influence of the surface area of the support on the activity of gold catalysts for CO oxidation , 2007 .

[5]  Shuhong Yu,et al.  Synthesis and Magnetic Properties of Uniform Hematite Nanocubes , 2007 .

[6]  T. García,et al.  Selective oxidation of CO in the presence of H2, H2O and CO2 utilising Au/α-Fe2O3 catalysts for use in fuel cells , 2006 .

[7]  M. Comotti,et al.  Nanocast mesoporous MgAl2O4 spinel monoliths as support for highly active gold CO oxidation catalyst. , 2006, Chemical communications.

[8]  Michael Grätzel,et al.  Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: nanostructure-directing effect of Si-doping. , 2006, Journal of the American Chemical Society.

[9]  Changwen Hu,et al.  Controlled synthesis and growth mechanism of hematite nanorhombohedra, nanorods and nanocubes , 2006 .

[10]  Ferdi Schüth,et al.  Support effect in high activity gold catalysts for CO oxidation. , 2006, Journal of the American Chemical Society.

[11]  Mool C. Gupta,et al.  Au/Fe2O3 nanocatalysts for CO oxidation: A comparative study of deposition–precipitation and coprecipitation techniques , 2005 .

[12]  Qing Peng,et al.  A general strategy for nanocrystal synthesis , 2005, Nature.

[13]  Chunhua Yan,et al.  Single-crystalline iron oxide nanotubes. , 2005, Angewandte Chemie.

[14]  T. García,et al.  Selective oxidation of CO in the presence of H2, H2O and CO2 via gold for use in fuel cells. , 2005, Chemical communications.

[15]  Jun Chen,et al.  α‐Fe2O3 Nanotubes in Gas Sensor and Lithium‐Ion Battery Applications , 2005 .

[16]  Zhong Lin Wang,et al.  Controlled growth of large-area, uniform, vertically aligned arrays of alpha-Fe2O3 nanobelts and nanowires. , 2005, The journal of physical chemistry. B.

[17]  Avelino Corma,et al.  Nanocrystalline CeO2 increases the activity of Au for CO oxidation by two orders of magnitude. , 2004, Angewandte Chemie.

[18]  Núria López,et al.  On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation , 2004 .

[19]  Jae-pyoung Ahn,et al.  Sol–Gel Mediated Synthesis of Fe2O3 Nanorods , 2003 .

[20]  Masatake Haruta,et al.  Catalysis of Gold Nanoparticles Deposited on Metal Oxides , 2002 .

[21]  A. Philipse,et al.  The Synthesis and Magnetic Properties of Nanosized Hematite (α-Fe2O3) Particles , 2002 .

[22]  Q. Pankhurst,et al.  Microstructural comparison of calcined and uncalcined gold/iron-oxide catalysts for low-temperature CO oxidation , 2002 .

[23]  J. Kiwi,et al.  Surface Mechanism of Molecular Recognition between Aminophenols and Iron Oxide Surfaces , 2001 .

[24]  Nidhi Gupta,et al.  Microcalorimetry, adsorption, and reaction studies of CO, O2, and CO + O2 over Au/Fe2O3, Fe2O3, and polycrystalline gold catalysts , 1999 .

[25]  A. I. Kozlov,et al.  Active oxygen species and reaction mechanism for low-temperature CO oxidation on an Fe2O3-supported Au catalyst prepared from Au(PPh3)(NO3) and as-precipitated iron hydroxide , 1999 .

[26]  D. Goodman,et al.  Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties , 1998, Science.

[27]  S. Galvagno,et al.  Mössbauer characterisation of gold/iron oxide catalysts , 1997 .

[28]  Bernard Delmon,et al.  Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4 , 1993 .

[29]  R. Augustine,et al.  Effect of catalyst pretreatment on the oxidation of carbon monoxide over coprecipitated gold catalysts , 1992 .

[30]  Masatake Haruta,et al.  Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide , 1989 .

[31]  S. Weiner,et al.  Interactions of sea-urchin skeleton macromolecules with growing calcite crystals— a study of intracrystalline proteins , 1988, Nature.

[32]  Hiroshi Sano,et al.  Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0 °C , 1987 .

[33]  E. Matijević,et al.  The morin transition in small α-Fe2O3 particles , 1985 .