Some remarks on the history and future of averaging techniques in a posteriori finite element error analysis

Given a flux or stress approximation ph from a low-order finite element simulation of an elliptic boundary value problem, averaging or (gradient-)recovery techniques aim the computation of an improved approximation Aph by a (simple) post processing of ph. For instance, frequently named after Zienkiewicz and Zhu, Aph is the elementwise interpolation of the nodal values (Aph)(z) obtained as the integral mean of ph on a neighbourhood of z. This paper gives an overview over old

[1]  R. Rodríguez Some remarks on Zienkiewicz‐Zhu estimator , 1994 .

[2]  Carsten Carstensen,et al.  Averaging techniques yield reliable a posteriori finite element error control for obstacle problems , 2004, Numerische Mathematik.

[3]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[4]  Claes Johnson,et al.  Error estimates and automatic time step control for nonlinear parabolic problems, I , 1987 .

[5]  Claes Johnson,et al.  Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.

[6]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[7]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM , 2002, Math. Comput..

[8]  R. Kouhia,et al.  A linear nonconforming finite element method for nearly incompressible elasticity and stokes flow , 1995 .

[9]  Rodolfo Rodríguez A Posteriori Error Analysis in the Finite Element Method , 1994 .

[10]  Carsten Carstensen,et al.  Local Stress Regularity in Scalar Nonconvex Variational Problems , 2002, SIAM J. Math. Anal..

[11]  Ricardo H. Nochetto,et al.  Local problems on stars: A posteriori error estimators, convergence, and performance , 2003, Math. Comput..

[12]  Carsten Carstensen,et al.  A unifying theory of a posteriori finite element error control , 2005, Numerische Mathematik.

[13]  I. Babuska,et al.  A feedback element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator , 1987 .

[14]  John W. Barrett,et al.  A priori and a posteriori error bounds for a nonconforming linear finite element approximation of a non-newtonian flow , 1998 .

[15]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[16]  Carsten Carstensen,et al.  An experimental survey of a posteriori Courant finite element error control for the Poisson equation , 2001, Adv. Comput. Math..

[17]  Rolf Rannacher,et al.  A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .

[18]  L. Wahlbin Superconvergence in Galerkin Finite Element Methods , 1995 .

[19]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM , 2002, Math. Comput..

[20]  Carsten Carstensen,et al.  Numerical analysis of the primal problem of elastoplasticity with hardening , 1999, Numerische Mathematik.

[21]  Carsten Carstensen,et al.  Coupling of Nonconforming Finite Elements and Boundary Elements I: A Priori Estimates , 1999, Computing.

[22]  Carsten Carstensen,et al.  Averaging techniques for reliable a posteriori FE-error control in elastoplasticity with hardening , 2003 .

[23]  Carsten Carstensen,et al.  All first-order averaging techniques for a posteriori finite element error control on unstructured grids are efficient and reliable , 2003, Math. Comput..

[24]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[25]  Carsten Carstensen,et al.  Numerical Analysis of Time-Depending PrimalElastoplasticity with Hardening , 2000, SIAM J. Numer. Anal..

[26]  Carsten Carstensen,et al.  Averaging technique for a posteriori error control in elasticity. Part III: Locking-free nonconforming FEM , 2001 .

[27]  Carsten Carstensen,et al.  Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis , 2004, Numerische Mathematik.

[28]  Carsten Carstensen,et al.  Estimation of Higher Sobolev Norm from Lower Order Approximation , 2004, SIAM J. Numer. Anal..

[29]  Wolfgang Dahmen,et al.  Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.

[30]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[31]  Carsten Carstensen,et al.  Averaging technique for FE – a posteriori error control in elasticity. Part I: Conforming FEM , 2001 .

[32]  Gabriel Wittum,et al.  Asymptotically exact a posteriori estimators for the pointwise gradient error on each element in irregular meshes. Part 1: A smooth problem and globally quasi-uniform meshes , 2001, Math. Comput..

[33]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[34]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[35]  R. Verfürth,et al.  Edge Residuals Dominate A Posteriori Error Estimates for Low Order Finite Element Methods , 1999 .

[36]  Carsten Carstensen,et al.  A posteriori error control in low-order finite element discretisations of incompressible stationary flow problems , 2001, Math. Comput..

[37]  Jinchao Xu,et al.  Asymptotically Exact A Posteriori Error Estimators, Part I: Grids with Superconvergence , 2003, SIAM J. Numer. Anal..

[38]  Mary F. Wheeler,et al.  Superconvergent recovery of gradients on subdomains from piecewise linear finite-element approximations , 1987 .

[39]  Ricardo H. Nochetto,et al.  Small data oscillation implies the saturation assumption , 2002, Numerische Mathematik.

[40]  C. Carstensen QUASI-INTERPOLATION AND A POSTERIORI ERROR ANALYSIS IN FINITE ELEMENT METHODS , 1999 .

[41]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[42]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[43]  Carsten Carstensen,et al.  Merging the Bramble-Pasciak-Steinbach and the Crouzeix-Thomée criterion for H1-stability of the L2-projection onto finite element spaces , 2002, Math. Comput..

[44]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[45]  Carsten Carstensen,et al.  Averaging technique for FE – a posteriori error control in elasticity. Part II: λ-independent estimates , 2001 .