Some remarks on the history and future of averaging techniques in a posteriori finite element error analysis
暂无分享,去创建一个
[1] R. Rodríguez. Some remarks on Zienkiewicz‐Zhu estimator , 1994 .
[2] Carsten Carstensen,et al. Averaging techniques yield reliable a posteriori finite element error control for obstacle problems , 2004, Numerische Mathematik.
[3] Rolf Rannacher,et al. An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.
[4] Claes Johnson,et al. Error estimates and automatic time step control for nonlinear parabolic problems, I , 1987 .
[5] Claes Johnson,et al. Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.
[6] P. Clément. Approximation by finite element functions using local regularization , 1975 .
[7] Carsten Carstensen,et al. Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM , 2002, Math. Comput..
[8] R. Kouhia,et al. A linear nonconforming finite element method for nearly incompressible elasticity and stokes flow , 1995 .
[9] Rodolfo Rodríguez. A Posteriori Error Analysis in the Finite Element Method , 1994 .
[10] Carsten Carstensen,et al. Local Stress Regularity in Scalar Nonconvex Variational Problems , 2002, SIAM J. Math. Anal..
[11] Ricardo H. Nochetto,et al. Local problems on stars: A posteriori error estimators, convergence, and performance , 2003, Math. Comput..
[12] Carsten Carstensen,et al. A unifying theory of a posteriori finite element error control , 2005, Numerische Mathematik.
[13] I. Babuska,et al. A feedback element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator , 1987 .
[14] John W. Barrett,et al. A priori and a posteriori error bounds for a nonconforming linear finite element approximation of a non-newtonian flow , 1998 .
[15] R. Bank,et al. Some a posteriori error estimators for elliptic partial differential equations , 1985 .
[16] Carsten Carstensen,et al. An experimental survey of a posteriori Courant finite element error control for the Poisson equation , 2001, Adv. Comput. Math..
[17] Rolf Rannacher,et al. A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .
[18] L. Wahlbin. Superconvergence in Galerkin Finite Element Methods , 1995 .
[19] Carsten Carstensen,et al. Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM , 2002, Math. Comput..
[20] Carsten Carstensen,et al. Numerical analysis of the primal problem of elastoplasticity with hardening , 1999, Numerische Mathematik.
[21] Carsten Carstensen,et al. Coupling of Nonconforming Finite Elements and Boundary Elements I: A Priori Estimates , 1999, Computing.
[22] Carsten Carstensen,et al. Averaging techniques for reliable a posteriori FE-error control in elastoplasticity with hardening , 2003 .
[23] Carsten Carstensen,et al. All first-order averaging techniques for a posteriori finite element error control on unstructured grids are efficient and reliable , 2003, Math. Comput..
[24] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[25] Carsten Carstensen,et al. Numerical Analysis of Time-Depending PrimalElastoplasticity with Hardening , 2000, SIAM J. Numer. Anal..
[26] Carsten Carstensen,et al. Averaging technique for a posteriori error control in elasticity. Part III: Locking-free nonconforming FEM , 2001 .
[27] Carsten Carstensen,et al. Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis , 2004, Numerische Mathematik.
[28] Carsten Carstensen,et al. Estimation of Higher Sobolev Norm from Lower Order Approximation , 2004, SIAM J. Numer. Anal..
[29] Wolfgang Dahmen,et al. Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.
[30] I. Babuska,et al. The finite element method and its reliability , 2001 .
[31] Carsten Carstensen,et al. Averaging technique for FE – a posteriori error control in elasticity. Part I: Conforming FEM , 2001 .
[32] Gabriel Wittum,et al. Asymptotically exact a posteriori estimators for the pointwise gradient error on each element in irregular meshes. Part 1: A smooth problem and globally quasi-uniform meshes , 2001, Math. Comput..
[33] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[34] W. Rheinboldt,et al. Error Estimates for Adaptive Finite Element Computations , 1978 .
[35] R. Verfürth,et al. Edge Residuals Dominate A Posteriori Error Estimates for Low Order Finite Element Methods , 1999 .
[36] Carsten Carstensen,et al. A posteriori error control in low-order finite element discretisations of incompressible stationary flow problems , 2001, Math. Comput..
[37] Jinchao Xu,et al. Asymptotically Exact A Posteriori Error Estimators, Part I: Grids with Superconvergence , 2003, SIAM J. Numer. Anal..
[38] Mary F. Wheeler,et al. Superconvergent recovery of gradients on subdomains from piecewise linear finite-element approximations , 1987 .
[39] Ricardo H. Nochetto,et al. Small data oscillation implies the saturation assumption , 2002, Numerische Mathematik.
[40] C. Carstensen. QUASI-INTERPOLATION AND A POSTERIORI ERROR ANALYSIS IN FINITE ELEMENT METHODS , 1999 .
[41] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[42] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[43] Carsten Carstensen,et al. Merging the Bramble-Pasciak-Steinbach and the Crouzeix-Thomée criterion for H1-stability of the L2-projection onto finite element spaces , 2002, Math. Comput..
[44] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[45] Carsten Carstensen,et al. Averaging technique for FE – a posteriori error control in elasticity. Part II: λ-independent estimates , 2001 .