Ion depletion zones in the polar wind: EXOS D suprathermal ion mass spectrometer observations in the polar cap

In the high-altitude polar cap, the suprathermal ion mass spectrometer (SMS) on the EXOS D (Akebono) satellite frequently “observed” ion depletion zones (IDZ) in which the thermal-energy ion flux was below the detection limit of SMS, corresponding to thermal-energy ion densities less than 10−2 cm−3. These IDZ are located primarily in the nightside region of the magnetosphere at invariant latitudes above 70° and at altitudes preferentially near apogee and between 8000 and 10,000 km (EXOS D apogee) but extending down to 3000 km. In contrast, outside the IDZ, the SMS regularly observed 3/16/2009 2:01:59 PMoutflowing H+, He+, O+, and O++ polar wind ions with energies typically less than 10 eV in the polar cap. Also, at sufficiently low altitudes below the IDZ the SMS instrument always observed H+, He+, O+, and O++ ions that were stationary in the Earth's corotating frame, i.e., ions observed in the spacecraft ram direction.

[1]  B. A. Whalen,et al.  EXOS D (Akebono) suprathermal mass spectrometer observations of the polar wind , 1993 .

[2]  S. Watanabe,et al.  Thermal ion observations of depletion and refilling in the plasmaspheric trough , 1992 .

[3]  R. M. Robinson,et al.  A survey of polar cap F region electron densities measured by the Sondrestrom radar , 1991 .

[4]  B. A. Whalen,et al.  Observations in the transverse ion energization region , 1991 .

[5]  Mike Lockwood,et al.  The excitation of ionospheric convection , 1991 .

[6]  B. A. Whalen,et al.  Minor ion composition in the polar ionosphere , 1991 .

[7]  M. Ashour‐Abdalla,et al.  Plasma characteristics of upflowing ion beams in the polar cap region , 1990 .

[8]  R. Schunk,et al.  A three‐dimensional time‐dependent model of the polar wind , 1989 .

[9]  Mike Lockwood,et al.  The cleft ion fountain , 1985 .

[10]  M. Lockwood,et al.  The cleft ion fountain: A two‐dimensional kinetic model , 1985 .

[11]  E. G. Shelley,et al.  Energetic Auroral and Polar Ion Outflow at DE 1 Altitudes' Magnitude, Composition, Magnetic Activity Dependence, and Long-Term Variations , 1985 .

[12]  B. A. Whalen,et al.  Distribution of upflowing ionospheric ions in the high‐altitude polar cap and auroral ionosphere , 1984 .

[13]  J. Green,et al.  First measurements of supersonic polar wind in the polar magnetosphere , 1984 .

[14]  R. Schunk,et al.  O+ ions in the polar wind , 1983 .

[15]  J. Geiss,et al.  The polar ionosphere as a source of energetic magnetospheric plasma , 1982 .

[16]  J. Hoffman,et al.  Light ion concentrations and fluxes in the polar regions during magnetically quiet times , 1980 .

[17]  L. H. Brace,et al.  The high‐latitude winter F region at 300 km: Thermal plasma observations from AE‐C , 1978 .

[18]  W. Axford The polar wind and the terrestrial helium budget , 1968 .

[19]  T. Holzer,et al.  The polar wind , 1968 .

[20]  S. Watanabe,et al.  The suprathermal ion mass spectrometer (SMS) onboard the Akebono (EXOS-D) satellite , 1990 .

[21]  B. Whalen The suprathermal ion mass spectrometer (SMS) for the Akebono (EXOS-D) spacecraft , 1990 .