Torque Analysis in Permanent-Magnet Synchronous Motors: A Comparative Study

This paper examines the torque ripple and cogging-torque variation in permanent-magnet synchronous motors (PMSMs). The effect of slot number and magnet skewing on electromagnetic motor torque, has been analyzed in different 20-pole, three-phase, PMSM configurations having the same envelop dimensions and output requirements. Finite-element technique is used for machine characteristics computation. Maxwell-stress tensor is used to find torque. Finite-element analysis results show that: 1) motors with fractional-slot winding have lower torque ripple but show a reduction of the average torque and 2) in step-skew magnet motors, torque-ripple reduction is significant only for a certain step number and magnet-skew angle.

[1]  Romeo Ortega,et al.  Design and implementation of an adaptive controller for torque ripple minimization in PM synchronous motors , 2000 .

[2]  Jianping Ying,et al.  A cogging torque reduction method for surface mounted permanent magnet motor , 2007, 2007 International Conference on Electrical Machines and Systems (ICEMS).

[3]  D. Casadei,et al.  Application of a multiobjective minimization technique for reducing the torque ripple in permanent-magnet motors , 1999 .

[4]  P. Mattavelli,et al.  Torque-ripple reduction in PM synchronous motor drives using repetitive current control , 2005, IEEE Transactions on Power Electronics.

[5]  F. Magnussen,et al.  Parasitic Effects in PM Machines With Concentrated Windings , 2005, IEEE Transactions on Industry Applications.

[6]  D. Howe,et al.  Synthesis of cogging torque waveform from analysis of a single stator slot , 2005, IEMDC 2005.

[7]  N. Takorabet,et al.  Effect of magnet segmentation on the cogging torque in surface-mounted permanent-magnet motors , 2006, IEEE Transactions on Magnetics.

[8]  J. Pyrhönen,et al.  TORQUE RIPPLE OF PERMANENT MAGNET MACHINES WITH CONCENTRATED WINDINGS , 2005 .

[9]  Ya-Jun Pan,et al.  A modular control scheme for PMSM speed control with pulsating torque minimization , 2004, IEEE Transactions on Industrial Electronics.

[10]  S.K. Panda,et al.  Torque ripple minimization in PM synchronous motors using iterative learning control , 2004, IEEE Transactions on Power Electronics.

[11]  E.F. El-Saadany,et al.  A Current Control Scheme With an Adaptive Internal Model for Torque Ripple Minimization and Robust Current Regulation in PMSM Drive Systems , 2008, IEEE Transactions on Energy Conversion.

[12]  K. Hameyer,et al.  Combined numerical and analytical method for geometry optimization of a PM motor , 2006, IEEE Transactions on Magnetics.

[13]  I. Husain,et al.  Permanent Magnet Synchronous Motor Magnet Designs with Skewing for Torque Ripple and Cogging Torque Reduction , 2007 .

[14]  G. Slemon,et al.  A Method of Reducing Ripple Torque in a Permanent Magnet Motor without Skewing , 1992, Digest of the Fifth Biennial IEEE Conference on Electromagnetic Field Computation.

[15]  D. Howe,et al.  Influence of design parameters on cogging torque in permanent magnet machines , 1997, 1997 IEEE International Electric Machines and Drives Conference Record.

[16]  D. Casadei,et al.  Minimizing torque ripple in permanent magnet synchronous motors with polymer-bonded magnets , 2002 .

[17]  P. Pillay,et al.  Cogging Torque Reduction in Permanent Magnet Machines , 2006, IEEE Transactions on Industry Applications.

[18]  Antonio Marcus Nogueira Lima,et al.  Reducing cogging torque in interior permanent magnet machines without skewing , 1998 .

[19]  S. J. Salon,et al.  Some aspects of torque calculations in electrical machines , 1997 .

[20]  Pier Luigi Ribani,et al.  Design optimization of a microsuperconducting magnetic energy storage system , 1999 .

[21]  Kazimierz Adamiak,et al.  Finite element force calculation: comparison of methods for electric machines , 1988 .

[22]  S. Pekarek,et al.  Investigation of Force Generation in a Permanent Magnet Synchronous Machine , 2007, IEEE Transactions on Energy Conversion.

[23]  G. Slemon,et al.  Reduction of cogging torque in permanent magnet motors , 1988 .

[24]  Jacek F. Gieras,et al.  Permanent magnet motor technology : design and applications , 1996 .