Photonic ring resonator filters for astronomical OH suppression.

Ring resonators provide a means of filtering specific wavelengths from a waveguide, and optionally dropping the filtered wavelengths into a second waveguide. Both of these features are potentially useful for astronomical instruments. In this paper we focus on their use as notch filters to remove the signal from atmospheric OH emission lines from astronomical spectra. We derive the design requirements for ring resonators for OH suppression from theory and finite difference time domain simulations. We find that rings with small radii (< 10 μm) are required to provide an adequate free spectral range, leading to high index contrast materials such as Si and Si3N4. Critically coupled rings with high self-coupling coefficients should provide the necessary Q factors, suppression depth, and throughput for efficient OH suppression, but will require post-inscription tuning of the coupling and the resonant wavelengths. The overall prospects for the use of ring resonators in astronomical instruments is promising, provided efficient fibre-chip coupling can be achieved.

[1]  K. Shortridge,et al.  Suppression of the near-infrared OH night sky lines with fibre Bragg gratings - first results , 2012, 1206.6551.

[2]  Jens H. Schmid,et al.  Roadmap on silicon photonics , 2016 .

[3]  Mario Martinelli,et al.  Synthesis of direct-coupled-resonators bandpass filters for WDM systems , 2002 .

[4]  Ang Li,et al.  Design of a single all-silicon ring resonator with a 150 nm free spectral range and a 100 nm tuning range around 1550 nm , 2016 .

[5]  Marc Sorel,et al.  Tunable Q-factor silicon microring resonators for ultra-low power parametric processes. , 2015, Optics letters.

[6]  T. Hänsch,et al.  Laser Frequency Combs for Astronomical Observations , 2008, Science.

[7]  Anthony J. Horton,et al.  The nature of the near-infrared interline sky background using fibre Bragg grating OH suppression , 2013, 1301.0326.

[8]  M. Lipson,et al.  Tailored anomalous group-velocity dispersion in silicon channel waveguides. , 2006, Optics express.

[9]  J. G. Robertson,et al.  Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging , 2012, 1210.0603.

[10]  A. Melloni,et al.  Roughness induced backscattering in optical silicon waveguides. , 2010, Physical review letters.

[11]  R. Davies,et al.  A method to remove residual OH emission from near-infrared spectra , 2007 .

[12]  C. Doerr,et al.  Low-Loss and Broadband Cantilever Couplers Between Standard Cleaved Fibers and High-Index-Contrast Si $_{3}$N $_{4}$ or Si Waveguides , 2010, IEEE Photonics Technology Letters.

[13]  Lukas Chrostowski,et al.  Temperature Effects on Silicon-on-Insulator (SOI) Racetrack Resonators: A Coupled Analytic and 2-D Finite Difference Approach , 2010, Journal of Lightwave Technology.

[14]  Jessica R. Zheng,et al.  GNOSIS: THE FIRST INSTRUMENT TO USE FIBER BRAGG GRATINGS FOR OH SUPPRESSION , 2012, 1212.1201.

[15]  Richard McMahon,et al.  DAzLE: the dark ages z (redshift) Lyman-α Explorer , 2004, SPIE Astronomical Telescopes + Instrumentation.

[16]  Marc Sorel,et al.  Silicon coupled-ring resonator structures for slow light applications: potential, impairments and ultimate limits , 2010 .

[17]  J. Bland-Hawthorn,et al.  Multimode fiber devices with single-mode performance. , 2005, Optics letters.

[18]  P. Dumon,et al.  Silicon microring resonators , 2012 .

[19]  Fengnian Xia,et al.  Statistics of light transport in 235-ring silicon coupled-resonator optical waveguides. , 2010, Optics express.

[20]  Qianfan Xu,et al.  Silicon microring resonators with 1.5-μm radius , 2008 .

[21]  Ang Li,et al.  Fundamental suppression of backscattering in silicon microrings. , 2017, Optics express.

[22]  Demetri Psaltis,et al.  Multi-notch holographic filters for atmospheric lines suppression , 2004, SPIE Astronomical Telescopes + Instrumentation.

[23]  T A Birks,et al.  A complex multi-notch astronomical filter to suppress the bright infrared sky. , 2011, Nature communications.

[24]  Donald N. B. Hall,et al.  Development of an OH-Airglow Suppressor Spectrograph , 1994 .

[25]  H. Rix,et al.  The James Webb Space Telescope , 2006, astro-ph/0606175.

[26]  R Schmogrow,et al.  Photonic wire bonding: a novel concept for chip-scale interconnects. , 2012, Optics express.

[27]  M. Lipson,et al.  Nanotaper for compact mode conversion. , 2003, Optics letters.

[28]  Weijie Tang,et al.  Efficient adiabatic silicon-on-insulator waveguide taper , 2014 .

[29]  Donald N. B. Hall,et al.  OH airglow suppressor spectrograph: design and prospects , 1993, Defense, Security, and Sensing.

[30]  Jason C. C. Mak,et al.  Automatic Resonance Alignment of High-Order Microring Filters , 2015, IEEE Journal of Quantum Electronics.

[31]  Frantz Martinache,et al.  Efficiently feeding single-mode fiber photonic spectrographs with an extreme adaptive optics system: on-sky characterization and preliminary spectroscopy , 2016, Astronomical Telescopes + Instrumentation.

[32]  Subaru Telescope,et al.  CISCO: Cooled Infrared Spectrograph and Camera for OHS on the Subaru Telescope , 2002 .

[33]  A. Pickles,et al.  OBSERVATIONS OF THE OH AIRGLOW EMISSION , 1993 .

[34]  R. Hata,et al.  OHS: OH-Airglow Suppressor for the Subaru Telescope , 2001 .

[35]  Frederick G. Watson Multifiber waveguide spectrograph for astronomy? , 1995, Defense, Security, and Sensing.

[36]  A. T. Tokunaga,et al.  The Mauna Kea observatories near-infrared filter set. II. Specifications for a new JHKL ' M ' filter set for infrared astronomy , 2001 .

[37]  J. Cruz,et al.  "Photonic lantern" spectral filters in multi-core Fiber. , 2012, Optics express.

[38]  J. Bland-Hawthorn,et al.  New approach to atmospheric OH suppression using an aperiodic fibre Bragg grating. , 2004, Optics express.

[39]  S. C. Ellis,et al.  Potential applications of ring resonators for astronomical instrumentation , 2012, Other Conferences.

[40]  F. Xia,et al.  Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects. , 2007, Optics express.

[41]  Y. Vlasov,et al.  Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides. , 2003, Optics express.

[42]  David Hillerkuss,et al.  Photonic Wire Bonds for Terabit/s Chip-to-Chip Interconnects , 2011, 1111.0651.

[43]  T. Kippenberg,et al.  Microresonator based optical frequency combs , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[44]  Brent E. Little,et al.  Portable frequency combs for optical frequency metrology , 2012 .

[45]  Michael Hochberg,et al.  High-Q ring resonators in thin silicon-on-insulator , 2004 .

[46]  Marc Sorel,et al.  Tunable silicon photonics directional coupler driven by a transverse temperature gradient. , 2013, Optics letters.

[47]  N. Jovanovic,et al.  First starlight spectrum captured using an integrated photonic micro-spectrograph , 2012, 1208.4418.

[48]  I. Meinel,et al.  OH Emission Bands in the Spectrum of the Night Sky. , 1950 .

[49]  Frantz Martinache,et al.  Enhancing Stellar Spectroscopy with Extreme Adaptive Optics and Photonics , 2016, 1609.06388.

[50]  Milan M. Milosevic,et al.  Trimming of ring resonators via ion implantation in silicon , 2017, Optics + Optoelectronics.

[51]  Yu Yude,et al.  Silicon-Based Asymmetric Add-Drop Microring Resonators with Ultra-Large Through-Port Extinctions * , 2010 .

[52]  Benjamin G Lee,et al.  Multichannel High-Bandwidth Coupling of Ultradense Silicon Photonic Waveguide Array to Standard-Pitch Fiber Array , 2011, Journal of Lightwave Technology.

[53]  J. Bland-Hawthorn,et al.  Optimization algorithm for ultrabroadband multichannel aperiodic fiber Bragg grating filters. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[54]  Nick Cvetojevic,et al.  Demonstration of uniform multicore fiber Bragg gratings. , 2014, Optics express.

[55]  J. Bland-Hawthorn,et al.  Rugate filters for OH-suppressed imaging at near-infrared wavelengths , 1997, astro-ph/9707298.

[56]  J. D. Thompson,et al.  Efficient fiber-optical interface for nanophotonic devices , 2014, 1409.7698.

[57]  J S Lawrence,et al.  Characterization and on-sky demonstration of an integrated photonic spectrograph for astronomy. , 2009, Optics express.

[58]  Joss Bland-Hawthorn,et al.  Efficient multi-mode to single-mode coupling in a photonic lantern. , 2009, Optics express.

[59]  Nick Cvetojevic,et al.  PIMMS: photonic integrated multimode microspectrograph , 2010, Astronomical Telescopes + Instrumentation.

[60]  Soon Thor Lim,et al.  How small can a microring resonator be and yet be polarization independent? , 2009, Applied optics.

[61]  J. Bland-Hawthorn,et al.  The case for OH suppression at near-infrared wavelengths , 2008, 0801.3870.

[62]  R. Thomson,et al.  The photonic lantern , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[63]  Frederick G. Watson Waveguide spectrographs for astronomy? , 1997, Other Conferences.

[64]  Nick Cvetojevic,et al.  Developing arrayed waveguide grating spectrographs for multi-object astronomical spectroscopy. , 2012, Optics express.

[65]  Clayton R. Locke,et al.  Laser frequency comb techniques for precise astronomical spectroscopy , 2012, 1202.0819.