Analytical Calculation of Impedance Matching for Probe-Fed Microstrip Patch Antennas

The goal of this article is to present an analytical solution to the feeding mechanism for a microstrip patch antenna fed by a vertical probe. The feeding mechanism employs a circular capacitive structure to improve the impedance matching, specifically for microstrip patch antennas on thick dielectrics. A circuit model is introduced to find the design parameters. The circuit model includes a series inductor associated with the feeding probe, a parallel plate radial microstrip line, a series radial gap capacitor and an RLC resonator as the patch antenna. A closed form impedance transformation is generated for the parallel plate radial microstrip line. The result of a Schwarz-Christoffel mapping is used to find the radial gap capacitor. The full-wave simulation and measured results are compared with the model and display good agreement.

[1]  H. Wang,et al.  A Microstrip Antenna Array Formed by Microstrip Line Fed Tooth-Like-Slot Patches , 2007, IEEE Transactions on Antennas and Propagation.

[2]  A. Giere,et al.  GPS patch antenna with photovoltaic solar cells for vehicular applications , 2003, 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.03CH37484).

[3]  A. Papiernik,et al.  Simple model for the input impedance of coax-fed rectangular microstrip patch antenna for CAD , 1988 .

[4]  S. Gevorgian,et al.  Line Capacitance and Impedance of Coplanar-Strip Waveguides on Substrates with Multiple Dielectric Layers , 2001, 2001 31st European Microwave Conference.

[5]  Lai,et al.  A wideband patch antenna with cross-polarization suppression , 2004, IEEE Antennas and Wireless Propagation Letters.

[6]  Xiaoning Ye,et al.  Wide-band E-shaped patch antennas for wireless communications , 2001 .

[7]  R. Collin Foundations for microwave engineering , 1966 .

[8]  D. Pozar Microstrip antenna aperture-coupled to a microstripline , 1985 .

[9]  R. Waterhouse,et al.  Wideband aperture coupled stacked patch antenna using thick substrates , 1996 .

[10]  P. Hall,et al.  Probe compensation in thick microstrip patches , 1987 .

[11]  G. Thiele,et al.  Antenna theory and design , 1981 .

[12]  H. Wang,et al.  A Single Layer Wideband U-Slot Microstrip Patch Antenna Array , 2008, IEEE Antennas and Wireless Propagation Letters.

[13]  Y. Rahmat-Samii,et al.  Multiport characteristics of a wide-band cavity backed annular patch antenna for multipolarization operations , 2005, IEEE Transactions on Antennas and Propagation.

[14]  P. de Maagt,et al.  Making planar antennas out of solar cells , 2002 .

[15]  S. V. Shynu,et al.  Quarter-wave metal plate solar antenna , 2008 .

[16]  P. de Maagt,et al.  Stainless steel slot antenna with integrated solar cells , 2000 .

[17]  R. Harrington Time-Harmonic Electromagnetic Fields , 1961 .

[18]  K. Araki,et al.  Microstrip antenna with solar cells for microsatellites , 1994, Proceedings of IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science Meeting.