Design strategies of the mantis shrimp spike: How the crustacean cuticle became a remarkable biological harpoon

[1]  C. Malherbe,et al.  Structure and mineralization of the spearing mantis shrimp (Stomatopoda; Lysiosquillina maculata) body and spike cuticles. , 2021, Journal of structural biology.

[2]  H. Le Ferrand,et al.  Impact-resistant materials inspired by the mantis shrimp's dactyl club , 2021, Matter.

[3]  Justin W. Fernandez,et al.  Local anisotropy in mineralized fibrocartilage and subchondral bone beneath the tendon-bone interface , 2021, Scientific Reports.

[4]  F. Barth,et al.  The spider cuticle: a remarkable material toolbox for functional diversity , 2021, Philosophical Transactions of the Royal Society A.

[5]  Pan Liu,et al.  Optimized Hierarchical Structure and Chemical Gradients Promote the Biomechanical Functions of the Spike of Mantis Shrimps. , 2021, ACS applied materials & interfaces.

[6]  Davide Ruffoni,et al.  Joining soft tissues to bone: Insights from modeling and simulations , 2020, Bone reports.

[7]  A. Mertens,et al.  Properties and role of interfaces in multimaterial 3D printed composites , 2020, Scientific Reports.

[8]  Stephen A. Wainwright,et al.  Mechanical Design in Organisms , 2020 .

[9]  R. Ritchie,et al.  Tough Nature-Inspired Helicoidal Composites with Printing-Induced Voids , 2020, Cell Reports Physical Science.

[10]  S. Cai,et al.  Discontinuous fibrous Bouligand architecture enabling formidable fracture resistance with crack orientation insensitivity , 2020, Proceedings of the National Academy of Sciences.

[11]  R. Caldwell,et al.  Multiscale Biological Composites: The Stomatopod Telson: Convergent Evolution in the Development of a Biological Shield (Adv. Funct. Mater. 34/2019) , 2019, Advanced Functional Materials.

[12]  Frances Y. Su,et al.  Multiscale Toughening Mechanisms in Biological Materials and Bioinspired Designs , 2019, Advanced materials.

[13]  S. Crofts,et al.  How do morphological sharpness measures relate to puncture performance in viperid snake fangs? , 2019, Biology Letters.

[14]  Thomas S. Lumpe,et al.  Tensile properties of multi-material interfaces in 3D printed parts , 2019, Materials & Design.

[15]  S. Crofts,et al.  The influence of cactus spine surface structure on puncture performance and anchoring ability is tuned for ecology , 2018, Proceedings of the Royal Society B.

[16]  Philip S L Anderson,et al.  Making a point: shared mechanics underlying the diversity of biological puncture , 2018, Journal of Experimental Biology.

[17]  L. Zorzetto,et al.  Wood‐Inspired 3D‐Printed Helical Composites with Tunable and Enhanced Mechanical Performance , 2018, Advanced Functional Materials.

[18]  P. Zavattieri,et al.  Crack twisting and toughening strategies in Bouligand architectures , 2018, International Journal of Solids and Structures.

[19]  Steven A Herrera,et al.  Ecologically Driven Ultrastructural and Hydrodynamic Designs in Stomatopod Cuticles , 2018, Advanced materials.

[20]  S. Rudykh,et al.  Towards mechanical characterization of soft digital materials for multimaterial 3D-printing , 2017, 1710.05187.

[21]  S. Ho,et al.  The evolutionary history of Stomatopoda (Crustacea: Malacostraca) inferred from molecular data , 2017, PeerJ.

[22]  Johan L van Leeuwen,et al.  Mechanisms of ovipositor insertion and steering of a parasitic wasp , 2017, Proceedings of the National Academy of Sciences.

[23]  P. Zavattieri,et al.  Twisting cracks in Bouligand structures. , 2017, Journal of the mechanical behavior of biomedical materials.

[24]  P. Fratzl,et al.  Crack driving force in twisted plywood structures. , 2017, Acta biomaterialia.

[25]  Franz Pfeiffer,et al.  The microstructure and micromechanics of the tendon-bone insertion. , 2017, Nature materials.

[26]  G. Agez,et al.  Multiwavelength micromirrors in the cuticle of scarab beetle Chrysina gloriosa. , 2017, Acta biomaterialia.

[27]  M. Čeh,et al.  Axially aligned organic fibers and amorphous calcium phosphate form the claws of a terrestrial isopod (Crustacea). , 2016, Journal of structural biology.

[28]  P. Zavattieri,et al.  A Sinusoidally Architected Helicoidal Biocomposite , 2016, Advanced materials.

[29]  Shahrouz Amini,et al.  The Mantis Shrimp Saddle: A Biological Spring Combining Stiffness and Flexibility , 2015 .

[30]  Shahrouz Amini,et al.  The role of quasi-plasticity in the extreme contact damage tolerance of the stomatopod dactyl club. , 2015, Nature materials.

[31]  Shaoze Yan,et al.  Barbs Facilitate the Helical Penetration of Honeybee (Apis mellifera ligustica) Stingers , 2014, PloS one.

[32]  S. Patek,et al.  LEVERS AND LINKAGES: MECHANICAL TRADE‐OFFS IN A POWER‐AMPLIFIED SYSTEM , 2014, Evolution; international journal of organic evolution.

[33]  Peter Fratzl,et al.  Multiscale structural gradients enhance the biomechanical functionality of the spider fang , 2014, Nature Communications.

[34]  H. Su,et al.  Textured fluorapatite bonded to calcium sulphate strengthen stomatopod raptorial appendages , 2014, Nature Communications.

[35]  J. Dirks,et al.  Fatigue of insect cuticle , 2013, Journal of Experimental Biology.

[36]  S N Patek,et al.  Strike mechanics of an ambush predator: the spearing mantis shrimp , 2012, Journal of Experimental Biology.

[37]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[38]  Jürgen Hartmann,et al.  A Spider's Fang: How to Design an Injection Needle Using Chitin‐Based Composite Material , 2012 .

[39]  Steven A Herrera,et al.  The Stomatopod Dactyl Club: A Formidable Damage-Tolerant Biological Hammer , 2012, Science.

[40]  Peter Fratzl,et al.  Enamel-like apatite crown covering amorphous mineral in a crayfish mandible , 2012, Nature Communications.

[41]  Sandra J Shefelbine,et al.  BoneJ: Free and extensible bone image analysis in ImageJ. , 2010, Bone.

[42]  S. Patek,et al.  Ritualized fighting and biological armor: the impact mechanics of the mantis shrimp's telson , 2010, Journal of Experimental Biology.

[43]  V. Kutschera,et al.  Evolution of mantis shrimps (Stomatopoda, Malacostraca) in the light of new Mesozoic fossils , 2010, BMC Evolutionary Biology.

[44]  S. Nikolov,et al.  Revealing the Design Principles of High‐Performance Biological Composites Using Ab initio and Multiscale Simulations: The Example of Lobster Cuticle , 2010, Advanced materials.

[45]  F. Barth,et al.  Biomaterial systems for mechanosensing and actuation , 2009, Nature.

[46]  M A Meyers,et al.  Structure and mechanical properties of selected biological materials. , 2008, Journal of the mechanical behavior of biomedical materials.

[47]  M K Ramasubramanian,et al.  Mechanics of a mosquito bite with applications to microneedle design , 2007, Bioinspiration & biomimetics.

[48]  Han Huang,et al.  Insect mandibles—comparative mechanical properties and links with metal incorporation , 2007, Naturwissenschaften.

[49]  D. Raabe,et al.  Hardness and elastic properties of dehydrated cuticle from the lobster Homarus americanus obtained by nanoindentation , 2006 .

[50]  Dierk Raabe,et al.  Microstructure and crystallographic texture of the chitin-protein network in the biological composite material of the exoskeleton of the lobster Homarus americanus , 2006 .

[51]  W. Gilly,et al.  The Projectile Tooth of a Fish-Hunting Cone Snail: Conus catus Injects Venom Into Fish Prey Using a High-Speed Ballistic Mechanism , 2004, The Biological Bulletin.

[52]  C. Rey,et al.  Polarized Micro-Raman Study of Fluorapatite Single Crystals , 2000 .

[53]  M. L. Reaka Molting in stomatopod crustaceans. I. Stages of the molt cycle, setagenesis, and morphology , 1975, Journal of morphology.

[54]  H. Fabritius,et al.  Mechanics of Arthropod Cuticle-Versatility by Structural and Compositional Variation , 2019, Architectured Materials in Nature and Engineering.

[55]  Xi-Qiao Feng,et al.  Study of biomechanical, anatomical, and physiological properties of scorpion stingers for developing biomimetic materials. , 2016, Materials science & engineering. C, Materials for biological applications.

[56]  G. Genin,et al.  Bi-material attachment through a compliant interfacial system at the tendon-to-bone insertion site. , 2012, Mechanics of materials : an international journal.

[57]  Yasuaki Seki,et al.  Biological materials: Structure and mechanical properties , 2008 .

[58]  P. Compère,et al.  Ultrastructural shape and three-dimensional organization of the intracuticular canal systems in the mineralized cuticle of the green crab Carcinus maenas. , 1987, Tissue & cell.