On the maximum bias functions of MM-estimates and constrained M-estimates of regression

We derive the maximum bias functions of the MM-estimates and the constrained M-estimates or CM-estimates of regression and compare them to the maximum bias functions of the S-estimates and the T-estimates of regression. In these comparisons, the CM-estimates tend to exhibit the most favorable bias-robustness properties. Also, under the Gaussian model, it is shown how one can construct a CM-estimate which has a smaller maximum bias function than a given S-estimate, that is, the resulting CM-estimate dominates the S-estimate in terms of maxbias and, at the same time, is considerably more efficient.

[1]  V. Yohai HIGH BREAKDOWN-POINT AND HIGH EFFICIENCY ROBUST ESTIMATES FOR REGRESSION , 1987 .

[2]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[3]  Ruben H. Zamar,et al.  Maximum Bias Curves for Robust Regression with Non-elliptical Regressors , 2001 .

[4]  David E. Tyler,et al.  Constrained M-Estimation for Regression , 1996 .

[5]  V. Yohai,et al.  Optimal locally robust M-estimates of regression , 1997 .

[6]  John Law,et al.  Robust Statistics—The Approach Based on Influence Functions , 1986 .

[7]  Peter J. Rousseeuw,et al.  ROBUST REGRESSION BY MEANS OF S-ESTIMATORS , 1984 .

[8]  V. Yohai,et al.  High Breakdown-Point Estimates of Regression by Means of the Minimization of an Efficient Scale , 1988 .

[9]  Henning Christian,et al.  EFFICIENT HIGH-BREAKDOWN-POINT ESTIMATORS IN ROBUST REGRESSION: WHICH FUNCTION TO CHOOSE ? , 1995 .

[10]  Xuming He A local breakdown property of robust tests in linear regression , 1991 .

[11]  D. G. Simpson,et al.  Lower Bounds for Contamination Bias: Globally Minimax Versus Locally Linear Estimation , 1993 .

[12]  P. J. Huber,et al.  Robust statistics, data analysis, and computer intensive methods : in honor of Peter Huber's 60th birthday , 1996 .

[13]  V. Yohai,et al.  Min-Max Bias Robust Regression. , 1989 .

[14]  V. Yohai,et al.  A Minimax-Bias Property of the Least $\alpha$-Quantile Estimates , 1993 .

[15]  V. Yohai,et al.  Bias- and efficiency-robustness of general M-estimators for regression with random carriers , 1979 .

[16]  Theo Gasser,et al.  Smoothing Techniques for Curve Estimation , 1979 .

[17]  W. Härdle,et al.  Robust and Nonlinear Time Series Analysis , 1984 .