On the composition depth profile of electrodeposited Fe-Co-Ni alloys

Abstract Depth profile of electrodeposited Fe–Co–Ni alloys was measured using secondary neutral mass spectrometry with the reverse sputtering direction. A spontaneous near-substrate composition modulation was found for each sample studied. The initial deposit is very rich in Fe, which decays due to the depletion of the electrolyte in the vicinity of the cathode surface. The near-substrate modulation pattern can be elucidated by taking into account the mutual deposition preference of the iron-group metals and the mass transport of the ions in the solution. The composition fluctuations of Fe and Co at distances larger than 100 nm from the substrate are strictly correlated. Composition fluctuations beyond the near-substrate zone are attributed to the instability of the depleted electrolyte layer in the vicinity of the cathode. A critical analysis of earlier depth profile data for electrodeposited Fe–Co–Ni samples is also given.

[1]  T. Yokoshima,et al.  Pulsed Electrodeposition of Nanocrystalline CoNiFe Soft Magnetic Thin Films , 2001 .

[2]  N. Vasiljevic,et al.  Influence of Additive Adsorption on Properties of Pulse Deposited CoFeNi Alloys , 2005 .

[3]  A. Csík,et al.  Spontaneous near-substrate composition modulation in electrodeposited Fe-Co-Ni alloys , 2009 .

[4]  I. Tabaković,et al.  Composition, Structure, Stress, and Coercivity of Electrodeposited Soft Magnetic CoNiFe Films: Thickness and Substrate Dependence , 2002 .

[5]  Á. Cziráki,et al.  Electrodeposition of Co–Ni–Cu/Cu multilayers: 1. Composition, structure and magnetotransport properties , 2007 .

[6]  M. Ghorbani,et al.  Electrodeposition of Ni–Fe–Co alloy nanowire in modified AAO template , 2005 .

[7]  M. Matlosz Competitive adsorption effects in the electrodeposition of iron-nickel alloys , 1993 .

[8]  T. Yokoshima,et al.  Effects of Saccharin and Thiourea on Sulfur Inclusion and Coercivity of Electroplated Soft Magnetic CoNiFe Film , 1999 .

[9]  R. Larson The Role of Homogeneous Chemical Kinetics in the Anomalous Codeposition of Binary Alloys , 2007 .

[10]  O. Azzaroni,et al.  Templated electrodeposition of patterned soft magnetic films , 2002 .

[11]  J. Fransaer,et al.  The Role of Metal Hydroxides in NiFe Deposition , 2000 .

[12]  Bongyoung Yoo,et al.  Electrodeposition of FeCoNi thin films for magnetic-MEMS devices , 2006 .

[13]  E. V. Khomenko,et al.  Magnetic properties of thin Co–Fe–Ni films , 2007 .

[14]  D. Boerma,et al.  Variation of structure and magnetic properties with thickness of thin Co59Fe26Ni15 films , 2005 .

[15]  N. Ishiwata,et al.  Evaluation of the Crystal Structure, Film Properties, and B s of Electroplated CoNiFe Films , 2002 .

[16]  Elizabeth J. Podlaha,et al.  NiCoFe Ternary Alloy Deposition III. A Mathematical Model , 2003 .

[17]  Tetsuya Osaka,et al.  A soft magnetic CoNiFe film with high saturation magnetic flux density and low coercivity , 1998, Nature.

[18]  N. Myung,et al.  Electrodeposition of low-stress high magnetic moment Fe-rich FeCoNi thin films , 2006 .

[19]  Xiaomin Liu,et al.  Easy axis dispersion and micromagnetic structure of electrodeposited, high moment Fe–Co–Ni films , 2001 .

[20]  Hong Xu,et al.  Recent developments in high-moment electroplated materials for recording heads , 2005, IBM J. Res. Dev..

[21]  Nosang V. Myung,et al.  Electrodeposited Iron Group Thin-Film Alloys: Structure-Property Relationships , 2001 .

[22]  C. Tobias,et al.  A Mathematical Model for Anomalous Codeposition of Nickel‐Iron on a Rotating Disk Electrode , 1989 .

[23]  E. Podlaha,et al.  Anomalous Codeposition of Iron Group Metals: II. Mathematical Model , 1999 .

[24]  Saibal Roy,et al.  Dependence of magnetic properties on micro- to nanostructure of CoNiFe films , 2008 .

[25]  Andrew G. Glen,et al.  APPL , 2001 .

[26]  S. Atalay,et al.  Effect of pH on the magnetoimpedance properties of electrodeposited CoNiFe microtubes , 2006 .

[27]  Y. Shacham-Diamand,et al.  The electrodeposition of cobalt-nickel-iron high aspect ratio thick film structures for magnetic MEMS applications , 2004 .

[28]  D. Boerma,et al.  Thermal stability of the in-plane magnetic anisotropy and the coercivity of nanocrystalline CoFeNi films , 2003 .

[29]  W. Butler,et al.  Optimization of magnetoresistive sensitivity in electrodeposited FeCoNi/Cu multilayers , 2005, IEEE Transactions on Magnetics.

[30]  Douglas G. Ivey,et al.  Electroplating of Nanocrystalline CoFeNi Soft Magnetic Thin Films from a Stable Citrate-Based Bath , 2004 .

[31]  E. Podlaha,et al.  Electrodeposition of FeCoNiCu/Cu Compositionally Modulated Multilayers , 2002 .

[32]  E. Podlaha,et al.  NiCoFe Ternary Alloy Deposition II. Influence of Electrolyte Concentration at Steady State , 2003 .

[33]  L. Shen,et al.  Electrodeposition of soft, high moment Co–Fe–Ni thin films , 2000 .

[34]  C. Aroca,et al.  Magnetic properties of CoNiFe alloys electrodeposited under potential and current control conditions , 2002 .

[35]  T. O'Donnell,et al.  High-frequency permeability of electroplated CoNiFe and CoNiFe–C alloys , 2008 .

[36]  D. Ivey,et al.  Characterization of Co–Fe and Co–Fe–Ni soft magnetic films electrodeposited from citrate-stabilized sulfate baths , 2007 .

[37]  A. Csík,et al.  Analysis of Co/Cu multilayers by SNMS reverse depth profiling , 2009 .

[38]  E. Podlaha,et al.  Magnetoresistance of electrodeposited iron–cobalt–nickel–copper multilayers , 2003 .

[39]  Xiaomin Liu,et al.  Electrodeposited, high-moment magnetic alloys for recording write heads , 2001 .

[40]  Giovanni Zangari,et al.  Structural and Magnetic Characterization of Electrodeposited, High Moment FeCoNi Films , 2003 .

[41]  C. Grimes,et al.  Fabrication of metallic nanowire arrays by electrodeposition into nanoporous alumina membranes: effect of barrier layer , 2007 .

[42]  L. Péter,et al.  Electrodeposition of Ni–Co–Cu/Cu multilayers: 2. Calculations of the element distribution and experimental depth profile analysis , 2007 .

[43]  A. Csík,et al.  Application of Surface Roughness Data for the Evaluation of Depth Profile Measurements of Nanoscale Multilayers , 2009 .