ESCRT-III Acts Downstream of MLKL to Regulate Necroptotic Cell Death and Its Consequences

[1]  D. Green,et al.  Necroptosis in development, inflammation and disease , 2016, Nature Reviews Molecular Cell Biology.

[2]  T. Vanden Berghe,et al.  An outline of necrosome triggers , 2016, Cellular and Molecular Life Sciences.

[3]  Wen-yan He,et al.  Necrosome core machinery: MLKL , 2016, Cellular and Molecular Life Sciences.

[4]  D. Green,et al.  Programmed necrosis in inflammation: Toward identification of the effector molecules , 2016, Science.

[5]  D. Green,et al.  Sequential Engagement of Distinct MLKL Phosphatidylinositol-Binding Sites Executes Necroptosis. , 2016, Molecular cell.

[6]  M. Gonzalez-Gaitan,et al.  ESCRT proteins restrict constitutive NF-κB signaling by trafficking cytokine receptors , 2016, Science Signaling.

[7]  Adam Frost,et al.  Structure and membrane remodeling activity of ESCRT-III helical polymers , 2015, Science.

[8]  D. Green,et al.  RIPK1 and NF-κB signaling in dying cells determines cross-priming of CD8+ T cells , 2015, Science.

[9]  D. Wallach,et al.  Necroptosis is preceded by nuclear translocation of the signaling proteins that induce it , 2015, Cell Death and Differentiation.

[10]  D. Green,et al.  Caspase-8 scaffolding function and MLKL regulate NLRP3 inflammasome activation downstream of TLR3 , 2015, Nature Communications.

[11]  Maryam Rashidi,et al.  RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL , 2015, Nature Communications.

[12]  F. Wendler,et al.  The ESCRT machinery regulates the secretion and long-range activity of Hedgehog , 2014, Nature.

[13]  M. Corrotte,et al.  Damage control: cellular mechanisms of plasma membrane repair. , 2014, Trends in cell biology.

[14]  D. Green,et al.  The two faces of receptor interacting protein kinase-1. , 2014, Molecules and Cells.

[15]  Kristy Brown,et al.  Mechanism of Ca2+-triggered ESCRT assembly and regulation of cell membrane repair , 2014, Nature Communications.

[16]  Jiahuai Han,et al.  RNA viruses promote activation of the NLRP3 inflammasome through a RIP1-RIP3-DRP1 signaling pathway , 2014, Nature Immunology.

[17]  K. Segawa,et al.  Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure , 2014, Science.

[18]  D. Green,et al.  RIPK1 both positively and negatively regulates RIPK3 oligomerization and necroptosis , 2014, Cell Death and Differentiation.

[19]  Xiaodong Wang,et al.  Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. , 2014, Molecular cell.

[20]  Andrew P McMahon,et al.  Cell-specific translational profiling in acute kidney injury. , 2014, The Journal of clinical investigation.

[21]  F. Perez,et al.  ESCRT Machinery Is Required for Plasma Membrane Repair , 2014, Science.

[22]  David L. Stokes,et al.  Polarized release of TCR-enriched microvesicles at the T cell immunological synapse , 2014, Nature.

[23]  Ling-gang Wu,et al.  Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis , 2013, Nature Cell Biology.

[24]  Xinqi Gong,et al.  Structural insights into RIP3-mediated necroptotic signaling. , 2013, Cell reports.

[25]  H. Horvitz,et al.  Xk-Related Protein 8 and CED-8 Promote Phosphatidylserine Exposure in Apoptotic Cells , 2013, Science.

[26]  Andrew Kovalenko,et al.  Caspase-8 blocks kinase RIPK3-mediated activation of the NLRP3 inflammasome. , 2013, Immunity.

[27]  A. Degterev,et al.  Activity and specificity of necrostatin-1, small-molecule inhibitor of RIP1 kinase , 2012, Cell Death and Differentiation.

[28]  D. Green,et al.  Survival function of the FADD-CASPASE-8-cFLIP(L) complex. , 2012, Cell reports.

[29]  Xiaodong Wang,et al.  Mixed Lineage Kinase Domain-like Protein Mediates Necrosis Signaling Downstream of RIP3 Kinase , 2012, Cell.

[30]  R. Hakem,et al.  RIP3 mediates the embryonic lethality of caspase-8-deficient mice , 2011, Nature.

[31]  Guy S. Salvesen,et al.  Catalytic activity of the caspase-8-FLIPL complex inhibits RIPK3-dependent necrosis , 2011, Nature.

[32]  S. Nagata,et al.  Calcium-dependent phospholipid scrambling by TMEM16F , 2010, Nature.

[33]  Jeremy G. Carlton,et al.  The ESCRT machinery: a cellular apparatus for sorting and scission. , 2010, Biochemical Society transactions.

[34]  S. Grinstein,et al.  The distribution and function of phosphatidylserine in cellular membranes. , 2010, Annual review of biophysics.

[35]  J. Garin,et al.  Alix and ALG-2 Are Involved in Tumor Necrosis Factor Receptor 1-induced Cell Death* , 2008, Journal of Biological Chemistry.

[36]  S. Dasgupta,et al.  Lactadherin binding and phosphatidylserine expression on cell surface-comparison with annexin A5. , 2006, Translational research : the journal of laboratory and clinical medicine.

[37]  M. Albert,et al.  Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs , 1998, Nature.

[38]  D. Green,et al.  Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl , 1995, The Journal of experimental medicine.

[39]  H. Stenmark,et al.  Cellular Functions and Molecular Mechanisms of the ESCRT Membrane-Scission Machinery. , 2017, Trends in biochemical sciences.