Temporal and spatial oscillations in bacteria

[1]  Michael J Rust,et al.  Light-Driven Changes in Energy Metabolism Directly Entrain the Cyanobacterial Circadian Oscillator , 2011, Science.

[2]  Andrew J. Millar,et al.  Circadian rhythms persist without transcription in a eukaryote , 2010, Nature.

[3]  A. B. Reddy,et al.  Circadian Clocks in Human Red Blood Cells , 2010, Nature.

[4]  S. Golden,et al.  Simplicity and complexity in the cyanobacterial circadian clock mechanism. , 2010, Current opinion in genetics & development.

[5]  C. Jacobs-Wagner,et al.  Cell cycle coordination and regulation of bacterial chromosome segregation dynamics by polarly localized proteins , 2010, The EMBO journal.

[6]  L. Shapiro,et al.  A spindle-like apparatus guides bacterial chromosome segregation , 2010, Nature Cell Biology.

[7]  T. Mignot,et al.  A Bacterial Ras-Like Small GTP-Binding Protein and Its Cognate GAP Establish a Dynamic Spatial Polarity Axis to Control Directed Motility , 2010, PLoS biology.

[8]  M. Howard,et al.  Pushing and Pulling in Prokaryotic DNA Segregation , 2010, Cell.

[9]  A. Wittinghofer,et al.  Regulation of dynamic polarity switching in bacteria by a Ras-like G-protein and its cognate GAP , 2010, The EMBO journal.

[10]  Tetsuya Mori,et al.  Coupling of a Core Post-Translational Pacemaker to a Slave Transcription/Translation Feedback Loop in a Circadian System , 2010, PLoS biology.

[11]  Amnon Amir,et al.  Damped oscillations in the adaptive response of the iron homeostasis network of E. coli , 2010, Molecular microbiology.

[12]  Elisabeth Fischer-Friedrich,et al.  Intra- and intercellular fluctuations in Min-protein dynamics decrease with cell length , 2010, Proceedings of the National Academy of Sciences.

[13]  S. Golden,et al.  The KaiA protein of the cyanobacterial circadian oscillator is modulated by a redox-active cofactor , 2010, Proceedings of the National Academy of Sciences.

[14]  Qiang Wang,et al.  Elevated ATPase Activity of KaiC Applies a Circadian Checkpoint on Cell Division in Synechococcus elongatus , 2010, Cell.

[15]  L. Shapiro,et al.  Bacterial chromosome organization and segregation. , 2010, Cold Spring Harbor perspectives in biology.

[16]  Vikram Vijayan,et al.  Oscillations in supercoiling drive circadian gene expression in cyanobacteria , 2009, Proceedings of the National Academy of Sciences.

[17]  H. McAdams,et al.  System‐level design of bacterial cell cycle control , 2009, FEBS letters.

[18]  E. O’Shea,et al.  The molecular clockwork of a protein‐based circadian oscillator , 2009, FEBS letters.

[19]  Jeroen S. van Zon,et al.  Movement and equipositioning of plasmids by ParA filament disassembly , 2009, Proceedings of the National Academy of Sciences.

[20]  U. Jenal,et al.  The role of proteolysis in the Caulobacter crescentus cell cycle and development. , 2009, Research in microbiology.

[21]  Michael B. Elowitz,et al.  Architecture-Dependent Noise Discriminates Functionally Analogous Differentiation Circuits , 2009, Cell.

[22]  B. Maier,et al.  Regulation of the type IV pili molecular machine by dynamic localization of two motor proteins , 2009, Molecular microbiology.

[23]  Jeff Errington,et al.  Bacterial cell division: assembly, maintenance and disassembly of the Z ring , 2009, Nature Reviews Microbiology.

[24]  T. Kondo,et al.  Cyanobacterial daily life with Kai-based circadian and diurnal genome-wide transcriptional control in Synechococcus elongatus , 2009, Proceedings of the National Academy of Sciences.

[25]  John J. Tyson,et al.  Temporal Controls of the Asymmetric Cell Division Cycle in Caulobacter crescentus , 2009, PLoS Comput. Biol..

[26]  T. Schwede,et al.  Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression. , 2009, Genes & development.

[27]  S. Golden,et al.  How a cyanobacterium tells time. , 2008, Current opinion in microbiology.

[28]  J. Tyson,et al.  Design principles of biochemical oscillators , 2008, Nature Reviews Molecular Cell Biology.

[29]  M. Bennett,et al.  A fast, robust, and tunable synthetic gene oscillator , 2008, Nature.

[30]  Lotte Søgaard-Andersen,et al.  Reversing cells and oscillating motility proteins. , 2008, Molecular bioSystems.

[31]  Albert Goldbeter,et al.  Biological rhythms: Clocks for all times , 2008, Current Biology.

[32]  Mark Horowitz,et al.  Architecture and inherent robustness of a bacterial cell-cycle control system , 2008, Proceedings of the National Academy of Sciences.

[33]  Benjamin L Turner,et al.  Supporting Online Material Materials and Methods Som Text Figs. S1 to S3 Table S1 References Robust, Tunable Biological Oscillations from Interlinked Positive and Negative Feedback Loops , 2022 .

[34]  M. Laub,et al.  Allosteric Regulation of Histidine Kinases by Their Cognate Response Regulator Determines Cell Fate , 2008, Cell.

[35]  P. Schwille,et al.  Spatial Regulators for Bacterial Cell Division Self-Organize into Surface Waves in Vitro , 2008, Science.

[36]  John J. Tyson,et al.  A Quantitative Study of the Division Cycle of Caulobacter crescentus Stalked Cells , 2007, PLoS Comput. Biol..

[37]  Lucy Shapiro,et al.  Systems biology of Caulobacter. , 2007, Annual review of genetics.

[38]  Carl Hirschie Johnson,et al.  Circadian rhythms of superhelical status of DNA in cyanobacteria , 2007, Proceedings of the National Academy of Sciences.

[39]  Michael J Rust,et al.  References and Notes Supporting Online Material Materials and Methods Figs. S1 to S8 Tables S1 to S3 References Ordered Phosphorylation Governs Oscillation of a Three-protein Circadian Clock , 2022 .

[40]  Lucy Shapiro,et al.  A DNA methylation ratchet governs progression through a bacterial cell cycle , 2007, Proceedings of the National Academy of Sciences.

[41]  L. Søgaard-Andersen,et al.  Coupling of protein localization and cell movements by a dynamically localized response regulator in Myxococcus xanthus , 2007, The EMBO journal.

[42]  Takao Kondo,et al.  ATPase activity of KaiC determines the basic timing for circadian clock of cyanobacteria , 2007, Proceedings of the National Academy of Sciences.

[43]  J. Livny,et al.  Distribution of Centromere-Like parS Sites in Bacteria: Insights from Comparative Genomics , 2007, Journal of bacteriology.

[44]  Toshifumi Takao,et al.  A sequential program of dual phosphorylation of KaiC as a basis for circadian rhythm in cyanobacteria , 2007, The EMBO journal.

[45]  J. Lutkenhaus,et al.  Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z ring. , 2007, Annual review of biochemistry.

[46]  Jeroen S. van Zon,et al.  An allosteric model of circadian KaiC phosphorylation , 2007, Proceedings of the National Academy of Sciences.

[47]  K. Gerdes,et al.  Regulatory Cross-talk in the Double par Locus of Plasmid pB171* , 2007, Journal of Biological Chemistry.

[48]  Takao Kondo,et al.  labA: a novel gene required for negative feedback regulation of the cyanobacterial circadian clock protein KaiC. , 2007, Genes & development.

[49]  Michael T. Laub,et al.  Regulation of the bacterial cell cycle by an integrated genetic circuit , 2006, Nature.

[50]  M. Waldor,et al.  A dynamic, mitotic-like mechanism for bacterial chromosome segregation. , 2006, Genes & development.

[51]  S. Golden,et al.  Quinone sensing by the circadian input kinase of the cyanobacterial circadian clock , 2006, Proceedings of the National Academy of Sciences.

[52]  Michael W Young,et al.  Interplay of circadian clocks and metabolic rhythms. , 2006, Annual review of genetics.

[53]  D. Sherratt,et al.  Regular cellular distribution of plasmids by oscillating and filament‐forming ParA ATPase of plasmid pB171 , 2006, Molecular microbiology.

[54]  Takao Kondo,et al.  A KaiC-associating SasA–RpaA two-component regulatory system as a major circadian timing mediator in cyanobacteria , 2006, Proceedings of the National Academy of Sciences.

[55]  T. Kondo,et al.  Cyanobacterial circadian pacemaker: Kai protein complex dynamics in the KaiC phosphorylation cycle in vitro. , 2006, Molecular cell.

[56]  Patrick T McGrath,et al.  A phospho-signaling pathway controls the localization and activity of a protease complex critical for bacterial cell cycle progression. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[57]  D. Sherratt,et al.  The two Escherichia coli chromosome arms locate to separate cell halves. , 2006, Genes & development.

[58]  Stanly B. Williams,et al.  Circadian rhythms in gene transcription imparted by chromosome compaction in the cyanobacterium Synechococcus elongatus. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Paul Brazhnik,et al.  Cell Cycle Control in Bacteria and Yeast: A Case of Convergent Evolution? , 2006, Cell cycle.

[60]  Harley H. McAdams,et al.  A Dynamically Localized Protease Complex and a Polar Specificity Factor Control a Cell Cycle Master Regulator , 2006, Cell.

[61]  Lucy Shapiro,et al.  DnaA couples DNA replication and the expression of two cell cycle master regulators , 2006, The EMBO journal.

[62]  Wouter-Jan Rappel,et al.  Division accuracy in a stochastic model of Min oscillations in Escherichia coli. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Alison K. Hottes,et al.  DnaA coordinates replication initiation and cell cycle transcription in Caulobacter crescentus , 2005, Molecular microbiology.

[64]  L. Rothfield,et al.  Spatial control of bacterial division-site placement , 2005, Nature Reviews Microbiology.

[65]  T. Mignot,et al.  Regulated Pole-to-Pole Oscillations of a Bacterial Gliding Motility Protein , 2005, Science.

[66]  P. D. de Boer,et al.  SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over Chromosomes in E. coli. , 2005, Molecular cell.

[67]  T. Kondo,et al.  Reconstitution of Circadian Oscillation of Cyanobacterial KaiC Phosphorylation in Vitro , 2005, Science.

[68]  S. Golden,et al.  LdpA: a component of the circadian clock senses redox state of the cell , 2005, The EMBO journal.

[69]  T. den Blaauwen,et al.  Maturation of the Escherichia coli divisome occurs in two steps , 2005, Molecular microbiology.

[70]  Frank Jülicher,et al.  Oscillations in cell biology. , 2005, Current opinion in cell biology.

[71]  T. Leonard,et al.  Bacterial chromosome segregation: structure and DNA binding of the Soj dimer — a conserved biological switch , 2005, The EMBO journal.

[72]  Takao Kondo,et al.  No Transcription-Translation Feedback in Circadian Rhythm of KaiC Phosphorylation , 2005, Science.

[73]  Andrew W. Murray,et al.  The Ups and Downs of Modeling the Cell Cycle , 2004, Current Biology.

[74]  Dylan T Burnette,et al.  Cytokinesis Monitoring during Development Rapid Pole-to-Pole Shuttling of a Signaling Protein by Localized Kinase and Phosphatase in Caulobacter , 2004, Cell.

[75]  Stanislas Leibler,et al.  Resilient circadian oscillator revealed in individual cyanobacteria , 2004, Nature.

[76]  Patrick T. McGrath,et al.  Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[77]  Lucy Shapiro,et al.  Oscillating Global Regulators Control the Genetic Circuit Driving a Bacterial Cell Cycle , 2004, Science.

[78]  K. Gerdes,et al.  Bacterial mitosis: partitioning protein ParA oscillates in spiral‐shaped structures and positions plasmids at mid‐cell , 2004, Molecular microbiology.

[79]  S. Etienne-Manneville,et al.  Cdc42 - the centre of polarity , 2004, Journal of Cell Science.

[80]  A. Murray,et al.  Recycling the Cell Cycle Cyclins Revisited , 2004, Cell.

[81]  S. Golden,et al.  A cyanobacterial circadian timing mechanism. , 2003, Annual review of genetics.

[82]  N. Wingreen,et al.  Dynamic structures in Escherichia coli: Spontaneous formation of MinE rings and MinD polar zones , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[83]  Tetsuya Mori,et al.  Cyanobacterial circadian clockwork: roles of KaiA, KaiB and the kaiBC promoter in regulating KaiC , 2003, The EMBO journal.

[84]  Katherine C. Chen,et al.  Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. , 2003, Current opinion in cell biology.

[85]  P. D. de Boer,et al.  ATP-Dependent Interactions between Escherichia coli Min Proteins and the Phospholipid Membrane In Vitro , 2003, Journal of bacteriology.

[86]  R. Valluzzi,et al.  Dynamic assembly of MinD into filament bundles modulated by ATP, phospholipids, and MinE , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[87]  Tetsuya Mori,et al.  Circadian clock protein KaiC forms ATP-dependent hexameric rings and binds DNA , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[88]  Takao Kondo,et al.  KaiA-stimulated KaiC phosphorylation in circadian timing loops in cyanobacteria , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[89]  Lucy Shapiro,et al.  A signal transduction protein cues proteolytic events critical to Caulobacter cell cycle progression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[90]  J. Lutkenhaus,et al.  Dynamic assembly of MinD on phospholipid vesicles regulated by ATP and MinE , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[91]  Lucy Shapiro,et al.  Genes directly controlled by CtrA, a master regulator of the Caulobacter cell cycle , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[92]  Detlef D. Leipe,et al.  Classification and evolution of P-loop GTPases and related ATPases. , 2002, Journal of molecular biology.

[93]  Karsten Kruse,et al.  A dynamic model for determining the middle of Escherichia coli. , 2002, Biophysical journal.

[94]  K. Gerdes,et al.  The double par locus of virulence factor pB171: DNA segregation is correlated with oscillation of ParA , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[95]  M. Howard,et al.  Dynamic compartmentalization of bacteria: accurate division in E. coli. , 2001, Physical review letters.

[96]  H. Meinhardt,et al.  Pattern formation in Escherichia coli: A model for the pole-to-pole oscillations of Min proteins and the localization of the division site , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[97]  P A de Boer,et al.  Dynamic localization cycle of the cell division regulator MinE in Escherichia coli , 2001, The EMBO journal.

[98]  L. Rothfield,et al.  The MinE ring required for proper placement of the division site is a mobile structure that changes its cellular location during the Escherichia coli division cycle. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[99]  Andrew D. Rutenberg,et al.  Dynamic Compartmentalization of Bacteria , 2001 .

[100]  H. McAdams,et al.  Global analysis of the genetic network controlling a bacterial cell cycle. , 2000, Science.

[101]  W. Shi,et al.  Type IV pilus of Myxococcus xanthus is a motility apparatus controlled by the frz chemosensory system , 2000, Current Biology.

[102]  S. Golden,et al.  CikA, a bacteriophytochrome that resets the cyanobacterial circadian clock. , 2000, Science.

[103]  M. Elowitz,et al.  A synthetic oscillatory network of transcriptional regulators , 2000, Nature.

[104]  J. Collins,et al.  Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.

[105]  J. Lutkenhaus,et al.  The MinC component of the division site selection system in Escherichia coli interacts with FtsZ to prevent polymerization. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[106]  L. Shapiro,et al.  Differential localization of two histidine kinases controlling bacterial cell differentiation. , 1999, Molecular cell.

[107]  P. D. de Boer,et al.  MinDE-Dependent Pole-to-Pole Oscillation of Division Inhibitor MinC in Escherichia coli , 1999, Journal of bacteriology.

[108]  J. Lutkenhaus,et al.  Topological regulation of cell division in Escherichia coli involves rapid pole to pole oscillation of the division inhibitor MinC under the control of MinD and MinE , 1999, Molecular microbiology.

[109]  L. Shapiro,et al.  Feedback control of a master bacterial cell-cycle regulator. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[110]  P A de Boer,et al.  Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[111]  Lucy Shapiro,et al.  Cell Cycle–Dependent Polar Localization of an Essential Bacterial Histidine Kinase that Controls DNA Replication and Cell Division , 1999, Cell.

[112]  A. Grossman,et al.  Chromosome arrangement within a bacterium , 1998, Current Biology.

[113]  S. Golden,et al.  Resonating circadian clocks enhance fitness in cyanobacteria. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[114]  T. Kondo,et al.  A Period-Extender Gene, pex, That Extends the Period of the Circadian Clock in the Cyanobacterium Synechococcus sp. Strain PCC 7942 , 1998, Journal of bacteriology.

[115]  L. Shapiro,et al.  Negative control of bacterial DNA replication by a cell cycle regulatory protein that binds at the chromosome origin. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[116]  D. Raskin,et al.  The MinE Ring: An FtsZ-Independent Cell Structure Required for Selection of the Correct Division Site in E. coli , 1997, Cell.

[117]  Lucy Shapiro,et al.  Cell Type-Specific Phosphorylation and Proteolysis of a Transcriptional Regulator Controls the G1-to-S Transition in a Bacterial Cell Cycle , 1997, Cell.

[118]  B. Binder,et al.  Circadian gating of cell division in cyanobacteria growing with average doubling times of less than 24 hours. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[119]  L. Shapiro,et al.  Caulobacter Lon protease has a critical role in cell-cycle control of DNA methylation. , 1996, Genes & development.

[120]  L. Shapiro,et al.  A cell cycle-regulated bacterial DNA methyltransferase is essential for viability. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[121]  Lucy Shapiro,et al.  Cell Cycle Control by an Essential Bacterial Two-Component Signal Transduction Protein , 1996, Cell.

[122]  S. Golden,et al.  Circadian orchestration of gene expression in cyanobacteria. , 1995, Genes & development.

[123]  L. Rothfield,et al.  The MinD protein is a membrane ATPase required for the correct placement of the Escherichia coli division site. , 1991, The EMBO journal.

[124]  E. Bi,et al.  FtsZ ring structure associated with division in Escherichia coli , 1991, Nature.

[125]  L. Rothfield,et al.  A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli , 1989, Cell.

[126]  Tan-Chi Huang,et al.  Dinitrogen-fixing endogenous rhythm in Synechococcus RF-1 , 1986 .

[127]  A. Mitsui,et al.  Strategy by which nitrogen-fixing unicellular cyanobacteria grow photoautotrophically , 1986, Nature.

[128]  D. Zusman,et al.  "Frizzy" genes of Myxococcus xanthus are involved in control of frequency of reversal of gliding motility. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[129]  Erinna F. Lee,et al.  Evidence That Focal Adhesion Complexes Power Bacterial Gliding Motility , 2022 .