Effect of a Metal Ion in Modulating the Binding Interaction of a Dietary Flavonoid with Bovine Serum Albumin and DNA: A Spectroscopic and Theoretical Approach

[1]  Md. Maidul Islam,et al.  Evidence for Dual Site Binding of Nile Blue A toward DNA: Spectroscopic, Thermodynamic, and Molecular Modeling Studies , 2021, ACS omega.

[2]  Mingfu Wang,et al.  Antioxidative Properties and Chemical Changes of Quercetin in Fish Oil: Quercetin Reacts with Free Fatty Acids to Form Its Ester Derivatives. , 2021, Journal of agricultural and food chemistry.

[3]  Y. Ye,et al.  Evaluating the potential risk by probing the site-selective binding of rutin-Pr(III) complex to human serum albumin. , 2020, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[4]  Solmaz Maleki Dizaj,et al.  Molecular mechanisms of anticancer effect of rutin , 2020, Phytotherapy research : PTR.

[5]  M. D. Saldaña,et al.  Ultrasound processing of rutin in food-grade solvents: Derivative compounds, antioxidant activities and optical rotation. , 2020, Food chemistry.

[6]  R. Shunmugam,et al.  Unusual red-orange emission from rhodamine-derived polynorbornene for selective binding to Fe3+ ions in an aqueous environment. , 2020, Analytical methods : advancing methods and applications.

[7]  P. Mondal,et al.  Rutin- serum albumin interaction in different media and its effective dose selection in radiation-induced cytotoxicity on human blood cells , 2020, Journal of Herbal Medicine.

[8]  Zhenlin Yang,et al.  Anticancer and Apoptotic-Inducing Effects of Rutin-Chitosan Nanoconjugates in Triple Negative Breast Cancer Cells , 2020, Journal of Cluster Science.

[9]  S. Awasthi,et al.  Interaction between the Antimalarial Drug Dispiro-Tetraoxanes and Human Serum Albumin: A Combined Study with Spectroscopic Methods and Computational Studies , 2020, ACS omega.

[10]  S. Techasakul,et al.  Binding interaction of potent HIV-1 NNRTIs, amino-oxy-diarylquinoline with the transport protein using spectroscopic and molecular docking. , 2020, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[11]  H. D. Dos Santos,et al.  Determination of Anticancer Zn(II)–Rutin Complex Structures in Solution through Density Functional Theory Calculations of 1H NMR and UV–VIS Spectra , 2020, ACS omega.

[12]  S. Awasthi,et al.  Interaction of coumarin triazole analogs to serum albumins: Spectroscopic analysis and molecular docking studies , 2020, Journal of molecular recognition : JMR.

[13]  Uttam Pal,et al.  Multi-spectroscopic and computational evaluation on the binding of sinapic acid and its Cu(II) complex with bovine serum albumin. , 2019, Food chemistry.

[14]  A. Agarwal,et al.  Insights into the interaction of potent antimicrobial chalcone triazole analogs with human serum albumin: spectroscopy and molecular docking approaches , 2019, RSC advances.

[15]  S. B. Prasad,et al.  A review on the chemistry and biological properties of Rutin, a promising nutraceutical agent , 2019, Asian Journal of Pharmacy and Pharmacology.

[16]  Jie‐Hua Shi,et al.  Exploration of intermolecular interaction of calf thymus DNA with sulfosulfuron using multi-spectroscopic and molecular docking techniques. , 2018, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[17]  N. Chattopadhyay,et al.  Unraveling the binding interaction of a bioactive pyrazole-based probe with serum proteins: Relative concentration dependent 1:1 and 2:1 probe-protein stoichiometries. , 2018, Biophysical chemistry.

[18]  F. Cui,et al.  Binding characteristics of imidazolium-based ionic liquids with calf thymus DNA: Spectroscopy studies , 2018, Journal of Fluorine Chemistry.

[19]  S. Dasgupta,et al.  Investigation on the interaction of Rutin with serum albumins: Insights from spectroscopic and molecular docking techniques. , 2018, Journal of photochemistry and photobiology. B, Biology.

[20]  Sameer Velankar,et al.  Worldwide Protein Data Bank validation information: usage and trends , 2018, Acta crystallographica. Section D, Structural biology.

[21]  Sandip Paul,et al.  Interaction of serum albumins with fluorescent ligand 4-azido coumarin: spectroscopic analysis and molecular docking studies , 2017 .

[22]  Uttam Pal,et al.  Acridone in a biological nanocavity: detailed spectroscopic and docking analyses of probing both the tryptophan residues of bovine serum albumin , 2017 .

[23]  Xiuquan Xu,et al.  Rutin–Nickel Complex: Synthesis, Characterization, Antioxidant, DNA Binding, and DNA Cleavage Activities , 2017, Biological Trace Element Research.

[24]  S. Etcheverry,et al.  In vitro and in vivo antitumor effects of the VO-chrysin complex on a new three-dimensional osteosarcoma spheroids model and a xenograft tumor in mice , 2016, JBIC Journal of Biological Inorganic Chemistry.

[25]  Xiuquan Xu,et al.  Quercetin-Iron Complex: Synthesis, Characterization, Antioxidant, DNA Binding, DNA Cleavage, and Antibacterial Activity Studies , 2016, Journal of Fluorescence.

[26]  Uttam Pal,et al.  Identification of modes of interactions between 9-aminoacridine hydrochloride hydrate and serum proteins by low and high resolution spectroscopy and molecular modeling , 2016 .

[27]  Atanu Singha Roy,et al.  DNA damaging, cell cytotoxicity and serum albumin binding efficacy of the rutin-Cu(ii) complex. , 2016, Molecular bioSystems.

[28]  A. Ćirić,et al.  Zinc complex based determination of rutin in dietary supplements , 2016 .

[29]  P. Ma,et al.  Multi-spectroscopic methods investigation on the interaction of tenoxicam with DNA. , 2015, Luminescence : the journal of biological and chemical luminescence.

[30]  U. Krishnan,et al.  Evaluation of a quercetin–gadolinium complex as an efficient positive contrast enhancer for magnetic resonance imaging , 2015 .

[31]  R. Mi,et al.  Unraveling the coptisine–ctDNA binding mechanism by multispectroscopic, electrochemical and molecular docking methods , 2015 .

[32]  N. Guchhait,et al.  Spectroscopic and viscometric elucidation of the interaction between a potential chloride channel blocker and calf-thymus DNA: the effect of medium ionic strength on the binding mode. , 2015, Physical chemistry chemical physics : PCCP.

[33]  T. Khayamian,et al.  Experimental and molecular modeling studies of the interaction of the polypyridyl Fe(II) and Fe(III) complexes with DNA and BSA. , 2015, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[34]  Bijan Kumar Paul,et al.  Interaction of a potential chloride channel blocker with a model transport protein: a spectroscopic and molecular docking investigation. , 2014, Physical chemistry chemical physics : PCCP.

[35]  S. Bhattacharya,et al.  Unveiling the groove binding mechanism of a biocompatible naphthalimide-based organoselenocyanate with calf thymus DNA: an "ex vivo" fluorescence imaging application appended by biophysical experiments and molecular docking simulations. , 2013, The journal of physical chemistry. B.

[36]  H. Hadadzadeh,et al.  Complex conversion of the redox pair CoIII–NO2 to CoII–NO3: Synthesis, crystal structure and DNA-binding of trans,trans,trans-[Co(py)2(H2O)2(NO3)2] , 2013 .

[37]  Marcus D. Hanwell,et al.  Avogadro: an advanced semantic chemical editor, visualization, and analysis platform , 2012, Journal of Cheminformatics.

[38]  U. Krishnan,et al.  Synthesis, characterization and DNA binding properties of rutin–iron complex , 2012 .

[39]  V. Psycharis,et al.  Biological evaluation of cobalt(II) complexes with non-steroidal anti-inflammatory drug naproxen. , 2012, Journal of inorganic biochemistry.

[40]  S. Senapati,et al.  Spectroscopic exploration of mode of binding of ctDNA with 3-hydroxyflavone: a contrast to the mode of binding with flavonoids having additional hydroxyl groups. , 2012, The journal of physical chemistry. B.

[41]  Mijun Peng,et al.  The effect of Cu2+ on interaction between flavonoids with different C-ring substituents and bovine serum albumin: structure-affinity relationship aspect. , 2011, Journal of inorganic biochemistry.

[42]  S. Dasgupta,et al.  Complex formation of rutin and quercetin with copper alters the mode of inhibition of Ribonuclease A , 2011, FEBS letters.

[43]  Xiaoqing Chen,et al.  Investigation of flavonoids bearing different substituents on ring C and their cu2+ complex binding with bovine serum albumin: structure-affinity relationship aspects. , 2011, Journal of agricultural and food chemistry.

[44]  Bochu Wang,et al.  From GC-rich DNA binding to the repression of survivin gene for quercetin nickel (II) complex: implications for cancer therapy , 2010, BioMetals.

[45]  Ștefania-Felicia Bărbuceanu,et al.  Synthesis, Spectral and Thermal Studies of New Rutin Vanadyl Complexes , 2010, Molecules.

[46]  A. Olson,et al.  AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading , 2009, J. Comput. Chem..

[47]  Bochu Wang,et al.  DNA binding, cytotoxicity, apoptotic inducing activity, and molecular modeling study of quercetin zinc(II) complex. , 2009, Bioorganic & medicinal chemistry.

[48]  N. Chattopadhyay,et al.  Binding interaction of cationic phenazinium dyes with calf thymus DNA: a comparative study. , 2008, The journal of physical chemistry. B.

[49]  L. Ji,et al.  Experimental and theoretical studies on the DNA-binding and spectral properties of water-soluble complex [Ru(MeIm) 4 (dpq)] 2+ , 2008 .

[50]  Federico D. Sacerdoti,et al.  Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters , 2006, ACM/IEEE SC 2006 Conference (SC'06).

[51]  Sandro Chiodo,et al.  Iron chelation by the powerful antioxidant flavonoid quercetin. , 2006, Journal of agricultural and food chemistry.

[52]  A. Banerjee,et al.  Interactions of the plant flavonoid fisetin with macromolecular targets: insights from fluorescence spectroscopic studies. , 2005, Journal of photochemistry and photobiology. B, Biology.

[53]  W. Lewandowski,et al.  The influence of metals on the electronic system of biologically important ligands. Spectroscopic study of benzoates, salicylates, nicotinates and isoorotates. Review. , 2005, Journal of inorganic biochemistry.

[54]  C. Rice-Evans,et al.  Antioxidant activity applying an improved ABTS radical cation decolorization assay. , 1999, Free radical biology & medicine.

[55]  M. Palaniandavar,et al.  Spectroscopic and voltammetric studies on copper complexes of 2,9-dimethyl-1,10-phenanthrolines bound to calf thymus DNA , 1997 .

[56]  C. Kumar,et al.  Groove binding of a styrylcyanine dye to the DNA double helix : the salt effect , 1993 .

[57]  D. Carter,et al.  Atomic structure and chemistry of human serum albumin , 1992, Nature.

[58]  D C Carter,et al.  Structure of human serum albumin. , 1990, Science.

[59]  A. I. Dorozhko,et al.  Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation. , 1989, Biochemical pharmacology.

[60]  N. Turro,et al.  Mixed-ligand complexes of ruthenium(II): factors governing binding to DNA , 1989 .

[61]  P. Ross,et al.  Thermodynamics of protein association reactions: forces contributing to stability. , 1981, Biochemistry.

[62]  Antje Sommer,et al.  Principles Of Fluorescence Spectroscopy , 2016 .

[63]  Yi Liu,et al.  Fluorescence Study on the Interaction of Bovine Serum Albumin with P-Aminoazobenzene , 2007, Journal of Fluorescence.

[64]  M. Oratz,et al.  Serum albumin , 2005, The American Journal of Digestive Diseases.

[65]  E. Sussuchi,et al.  SYNTHESIS AND REACTIVITY IN INORGANIC AND METAL-ORGANIC CHEMISTRY , 2003 .