On Dynamical Decomposition of Multiscale Oceanic Motions

The ocean hosts a variety of fluid motions characterized by contrasting dynamical regimes and spatiotemporal scales. A practical decomposition of multiscale motions in realistic oceanic settings is crucial to advancing dynamical interpretation and prediction of oceanic processes, but remains a major challenge. To this end, methodology is developed in this study for decomposing multiscale oceanic motions based on their respective dynamical characteristics. Specifically, large‐scale currents and barotropic tides have the largest horizontal scales but contrasting frequencies; low‐mode internal gravity waves (IGWs) are well constrained by linear dispersion relations, whereas mesoscale flows are of relatively low frequency and with horizontal scales above the first baroclinic deformation radius; the intrinsic frequency of high‐mode IGWs (submesoscale flows) is above (well below) the inertial frequency. The validity and usefulness of the proposed methodology are demonstrated with a proof‐of‐concept application to simulated flows in the central basin of the South China Sea.

[1]  R. Abernathey,et al.  Using Lagrangian Filtering to Remove Waves From the Ocean Surface Velocity Field , 2023, Journal of Advances in Modeling Earth Systems.

[2]  Zhiyu Liu,et al.  Interpreting consequences of inadequate sampling of oceanic motions , 2022, Limnology and Oceanography Letters.

[3]  A. Hogg,et al.  A New Open Source Implementation of Lagrangian Filtering: A Method to Identify Internal Waves in High‐Resolution Simulations , 2021, Journal of Advances in Modeling Earth Systems.

[4]  H. Addleman,et al.  NOAA National Centers for Environmental Information Fisheries Acoustics Archive Network Deep Dive , 2021 .

[5]  Dake Chen,et al.  Submesoscale Eddies in the South China Sea , 2021, Geophysical Research Letters.

[6]  D. Menemenlis,et al.  Characterizing meso- to submesoscale features in the South China Sea , 2020 .

[7]  E. Curchitser,et al.  Particle‐Based Lagrangian Filtering for Locating Wave‐Generated Thermal Refugia for Coral Reefs , 2020 .

[8]  D. Menemenlis,et al.  Statistical Comparisons of Temperature Variance and Kinetic Energy in Global Ocean Models and Observations: Results From Mesoscale to Internal Wave Frequencies , 2020, Journal of Geophysical Research: Oceans.

[9]  S. Cai,et al.  Seasonal and Spatial Features of Barotropic and Baroclinic Tides in the Northwestern South China Sea , 2020 .

[10]  Gengxin Chen,et al.  Periodic Mesoscale Eddies in the South China Sea , 2020 .

[11]  D. Menemenlis,et al.  Reconstructing Upper-Ocean Vertical Velocity Field from Sea Surface Height in the Presence of Unbalanced Motion , 2020 .

[12]  H. Sasaki,et al.  Reconstructing the Ocean Interior from High-Resolution Sea Surface Information , 2019, Journal of Physical Oceanography.

[13]  Dimitris Menemenlis,et al.  Surface Kinetic Energy Distributions in the Global Oceans From a High‐Resolution Numerical Model and Surface Drifter Observations , 2019, Geophysical Research Letters.

[14]  D. Menemenlis,et al.  Diagnosing Ocean‐Wave‐Turbulence Interactions From Space , 2019, Geophysical Research Letters.

[15]  D. Menemenlis,et al.  Decomposition of the Multimodal Multidirectional M2 Internal Tide Field , 2019, Journal of Atmospheric and Oceanic Technology.

[16]  A. Hogg,et al.  On the Momentum Flux of Internal Tides , 2019, Journal of Physical Oceanography.

[17]  E. Zaron Baroclinic Tidal Sea Level from Exact-Repeat Mission Altimetry , 2019, Journal of Physical Oceanography.

[18]  P. Niiler,et al.  Observations of mesoscale variability in the western North Atlantic : A comparative study by , 2019 .

[19]  J. Storch,et al.  The Interior Energy Pathway: Inertia-Gravity Wave Emission by Oceanic Flows , 2019, Mathematics of Planet Earth.

[20]  D. Menemenlis,et al.  Partitioning Ocean Motions Into Balanced Motions and Internal Gravity Waves: A Modeling Study in Anticipation of Future Space Missions , 2018, Journal of Geophysical Research: Oceans.

[21]  E. Joseph Metzger,et al.  A Primer on Global Internal Tide and Internal Gravity Wave Continuum Modeling in HYCOM and MITgcm , 2018, New Frontiers in Operational Oceanography.

[22]  B. Qiu,et al.  Seasonality in Transition Scale from Balanced to Unbalanced Motions in the World Ocean , 2018 .

[23]  Dimitris Menemenlis,et al.  An Observing System Simulation Experiment for the Calibration and Validation of the Surface Water Ocean Topography Sea Surface Height Measurement Using In Situ Platforms , 2017 .

[24]  Zhong‐Kuo Zhao The Global Mode‐1 S2 Internal Tide , 2017 .

[25]  Dimitris Menemenlis,et al.  Spectral decomposition of internal gravity wave sea surface height in global models , 2017 .

[26]  A. Hogg,et al.  Spontaneous Surface Generation and Interior Amplification of Internal Waves in a Regional-Scale Ocean Model , 2017 .

[27]  P. Klein,et al.  Low‐mode internal tides and balanced dynamics disentanglement in altimetric observations: Synergy with surface density observations , 2017 .

[28]  Alan J. Wallcraft,et al.  Frequency content of sea surface height variability from internal gravity waves to mesoscale eddies , 2017 .

[29]  J. McWilliams,et al.  Stimulated Imbalance and the Enhancement of Eddy Kinetic Energy Dissipation by Internal Waves , 2017 .

[30]  D. Menemenlis,et al.  Seasonality of submesoscale dynamics in the Kuroshio Extension , 2016 .

[31]  X. Liang Canonical Transfer and Multiscale Energetics for Primitive and Quasigeostrophic Atmospheres , 2016, 1606.05793.

[32]  L. Rainville,et al.  Global Observations of Open-Ocean Mode-1 M2Internal Tides , 2016 .

[33]  James C. McWilliams,et al.  Submesoscale currents in the ocean , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[34]  R. Plougonven,et al.  Generation and backreaction of spontaneously emitted inertia‐gravity waves , 2016 .

[35]  Lee-Lueng Fu,et al.  Reconstructability of Three-Dimensional Upper-Ocean Circulation from SWOT Sea Surface Height Measurements , 2016 .

[36]  Dimitris Menemenlis,et al.  Mesoscale to submesoscale wavenumber spectra in Drake Passage , 2016 .

[37]  J. LaCasce,et al.  Estimating Subsurface Velocities from Surface Fields with Idealized Stratification , 2015 .

[38]  A. Mahadevan,et al.  Spontaneous Generation of Near-Inertial Waves by the Kuroshio Front , 2015 .

[39]  R. Ponte,et al.  Long-Period Tides in an Atmospherically Driven, Stratified Ocean , 2015 .

[40]  A. Wallcraft,et al.  Toward an internal gravity wave spectrum in global ocean models , 2015 .

[41]  R. Ferrari,et al.  Wave–vortex decomposition of one-dimensional ship-track data , 2014, Journal of Fluid Mechanics.

[42]  J. Richman,et al.  Geostrophic Turbulence in the Frequency–Wavenumber Domain: Eddy-Driven Low-Frequency Variability* , 2014 .

[43]  Zhong‐Kuo Zhao Internal tide radiation from the Luzon Strait , 2014 .

[44]  Glenn R. Flierl,et al.  Reconstructing the Ocean's Interior from Surface Data , 2013 .

[45]  J. Vanneste,et al.  Spontaneous inertia-gravity-wave generation by surface-intensified turbulence , 2012, Journal of Fluid Mechanics.

[46]  J. LaCasce Surface Quasigeostrophic Solutions and Baroclinic Modes with Exponential Stratification , 2012 .

[47]  Yi Liu,et al.  A three-dimensional gap filling method for large geophysical datasets: Application to global satellite soil moisture observations , 2012, Environ. Model. Softw..

[48]  Gengxin Chen,et al.  Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure , 2011 .

[49]  Damien Garcia,et al.  Robust smoothing of gridded data in one and higher dimensions with missing values , 2010, Comput. Stat. Data Anal..

[50]  Y. Qi,et al.  Variations of eddy kinetic energy in the South China Sea , 2010 .

[51]  O. Bühler,et al.  Waves and Mean Flows , 2009 .

[52]  C. Amante,et al.  ETOPO1 arc-minute global relief model : procedures, data sources and analysis , 2009 .

[53]  C. Wunsch,et al.  Ocean Circulation Kinetic Energy: Reservoirs, Sources, and Sinks , 2009 .

[54]  Bertrand Chapron,et al.  Three‐dimensional reconstruction of oceanic mesoscale currents from surface information , 2008 .

[55]  S. Erofeeva,et al.  Numerical study of the tide and tidal dynamics in the South China Sea , 2008 .

[56]  J. McWilliams,et al.  Mesoscale to Submesoscale Transition in the California Current System. Part I: Flow Structure, Eddy Flux, and Observational Tests , 2008 .

[57]  James C. McWilliams,et al.  Mesoscale to Submesoscale Transition in the California Current System. Part II: Frontal Processes , 2008 .

[58]  Bertrand Chapron,et al.  Potential use of microwave sea surface temperatures for the estimation of ocean currents , 2006 .

[59]  Joseph H. LaCasce,et al.  Estimating subsurface horizontal and vertical velocities from sea-surface temperature , 2006 .

[60]  Patrice Klein,et al.  Dynamics of the Upper Oceanic Layers in Terms of Surface Quasigeostrophy Theory , 2006 .

[61]  Joseph Pedlosky,et al.  Waves In The Ocean And Atmosphere , 2003 .

[62]  A. Majda Introduction to PDEs and Waves in Atmosphere and Ocean , 2003 .

[63]  S. Lentz,et al.  Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE , 2002 .

[64]  D. Cartwright,et al.  Estimates of internal tide energy fluxes from Topex/Poseidon Altimetry: Central North Pacific , 2001 .

[65]  Huasheng Hong,et al.  A Review on the Currents in the South China Sea: Seasonal Circulation, South China Sea Warm Current and Kuroshio Intrusion , 2000 .

[66]  L. Perelman,et al.  A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers , 1997 .

[67]  P. Bartello Geostrophic Adjustment and Inverse Cascades in Rotating Stratified Turbulence , 1995 .

[68]  P. Müller,et al.  Normal mode decomposition of small-scale oceanic motions , 1992 .

[69]  E. Kunze Near-Inertial Wave Propagation In Geostrophic Shear , 1985 .

[70]  A. E. Gill Atmosphere-Ocean Dynamics , 1982 .

[71]  C. Leith Nonlinear Normal Mode Initialization and Quasi-Geostrophic Theory , 1980 .