A review of simulation and performance modeling tools for the Roman coronagraph instrument

The Nancy Grace Roman Space Telescope Coronagraph Instrument (CGI) will be capable of characterizing exoplanets in reflected light and will demonstrate space technologies essential for future missions to take spectra of Earthlike exoplanets. As the mission and instrument move into the final stages of design, simulation tools spanning from depth of search calculators to detailed diffraction models have been created by a variety of teams. We summarize these efforts, with a particular focus on publicly available datasets and software tools. These include speckle and point-spread-function models, signal-to-noise calculators, and science product simulations (e.g. predicted observations of debris disks and exoplanet spectra). This review is intended to serve as a reference to facilitate engagement with the technical and science capabilities of the CGI instrument.

[1]  Feng Zhao,et al.  The WFIRST coronagraph instrument (CGI) technology demonstration (Conference Presentation) , 2019 .

[2]  Dmitry Savransky,et al.  EXOSIMS: Exoplanet Open-Source Imaging Mission Simulator , 2017 .

[3]  Laurent Pueyo,et al.  pyKLIP: PSF Subtraction for Exoplanets and Disks , 2015 .

[4]  John E. Krist,et al.  Data processing and algorithm development for the WFIRST coronagraph: comparison of RDI and ADI strategies and impact of spatial sampling on post-processing , 2016, Astronomical Telescopes + Instrumentation.

[5]  John H. Debes,et al.  WFIRST design reference mission: the coronagraph instrument (Conference Presentation) , 2019 .

[6]  Marshall D. Perrin,et al.  Data processing and algorithm development for the WFIRST-AFTA coronagraph: reduction of noise free simulated images, analysis and spectrum extraction with reference star differential imaging , 2015, SPIE Optical Engineering + Applications.

[7]  Ruslan Belikov,et al.  Multi-star wavefront control for the wide-field infrared survey telescope , 2018, Astronomical Telescopes + Instrumentation.

[8]  John E. Krist,et al.  Hybrid Lyot coronagraph for WFIRST-AFTA: coronagraph design and performance metrics , 2016 .

[9]  Margaret Turnbull,et al.  WFIRST: Exoplanet Data Challenge. Atmospheric retrieval results , 2018 .

[10]  Aki Roberge,et al.  Simulating the WFIRST coronagraph integral field spectrograph , 2017, Optical Engineering + Applications.

[11]  Wesley A. Traub,et al.  DEVELOPING ATMOSPHERIC RETRIEVAL METHODS FOR DIRECT IMAGING SPECTROSCOPY OF GAS GIANTS IN REFLECTED LIGHT. I. METHANE ABUNDANCES AND BASIC CLOUD PROPERTIES , 2016, 1604.05370.

[12]  N. Jeremy Kasdin,et al.  WFIRST-AFTA coronagraph shaped pupil masks: design, fabrication, and characterization , 2015 .

[13]  Margaret C Turnbull ExoCat-1: The Nearby Stellar Systems Catalog for Exoplanet Imaging Missions , 2015 .

[14]  Stuart B. Shaklan,et al.  Fast linearized coronagraph optimizer (FALCO) I: a software toolbox for rapid coronagraphic design and wavefront correction , 2018, Astronomical Telescopes + Instrumentation.

[15]  Olivier Guyon,et al.  Coronagraph instrument for WFIRST-AFTA , 2016 .

[16]  John E. Krist,et al.  Sensitivity of the WFIRST coronagraph performance to key instrument parameters , 2017, Optical Engineering + Applications.

[17]  Ruslan Belikov,et al.  Techniques for High-Contrast Imaging in Multi-Star Systems II: Multi-Star Wavefront Control , 2017 .

[18]  N. Jeremy Kasdin,et al.  WFIRST coronagraph technology requirements: status update and systems engineering approach , 2018, Astronomical Telescopes + Instrumentation.

[19]  H. Philip Stahl,et al.  Method for deriving optical telescope performance specifications for Earth-detecting coronagraphs , 2020, Journal of Astronomical Telescopes, Instruments, and Systems.

[20]  N. Jeremy Kasdin,et al.  The WFIRST coronagraph instrument: technology demonstration and science potential (Conference Presentation) , 2018 .

[21]  Nikole K. Lewis,et al.  Color Classification of Extrasolar Giant Planets: Prospects and Cautions , 2018, The Astronomical Journal.

[22]  Ewan S. Douglas,et al.  Faster imaging simulation through complex systems: a coronagraphic example , 2020, Optical Engineering + Applications.

[23]  John E. Krist,et al.  The WFIRST coronagraph instrument: a major step in the exploration of sun-like planetary systems via direct imaging , 2018, Astronomical Telescopes + Instrumentation.

[24]  Marshall D. Perrin,et al.  Accelerated modeling of near and far-field diffraction for coronagraphic optical systems , 2018, Astronomical Telescopes + Instrumentation.

[25]  Nikole K. Lewis,et al.  Exploration of the dynamical phase space of stars with known planets , 2019, Optical Engineering + Applications.

[26]  John E. Krist,et al.  WFIRST coronagraph optical modeling , 2017, Optical Engineering + Applications.

[27]  John E. Krist,et al.  Numerical modeling of the proposed WFIRST-AFTA coronagraphs and their predicted performances , 2015 .

[28]  K. Cahoy,et al.  EXOPLANET ALBEDO SPECTRA AND COLORS AS A FUNCTION OF PLANET PHASE, SEPARATION, AND METALLICITY , 2010, 1009.3071.

[29]  Nikole K. Lewis,et al.  Simulating the effects of exozodiacal dust in WFIRST CGI observations , 2019, Optical Engineering + Applications.

[30]  Marshall D. Perrin,et al.  Updated point spread function simulations for JWST with WebbPSF , 2014, Astronomical Telescopes and Instrumentation.

[31]  Zensheu Chang,et al.  IMPipeline: an integrated STOP modeling pipeline for the WFIRST coronagraph (Conference Presentation) , 2017 .

[32]  Dmitry Savransky,et al.  A Simple Depth-of-Search Metric for Exoplanet Imaging Surveys , 2017 .

[33]  Fang Shi,et al.  Low order wavefront sensing and control for WFIRST coronagraph , 2016, Astronomical Telescopes + Instrumentation.

[34]  Adam Burrows,et al.  Characterization of Exoplanet Atmospheres with the Optical Coronagraph on WFIRST , 2018, The Astronomical Journal.

[35]  Ewan S. Douglas,et al.  POPPY: Physical Optics Propagation in PYthon , 2016 .

[36]  Edward J. Wollack,et al.  Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report , 2015, 1503.03757.

[37]  K. Jarrod Millman,et al.  Array programming with NumPy , 2020, Nat..

[38]  N. Jeremy Kasdin,et al.  On the effects of pointing jitter, actuator drift, telescope rolls, and broadband detectors in dark hole maintenance and electric field order reduction , 2020, 2006.10014.

[39]  Dmitry Savransky,et al.  WFIRST-AFTA coronagraph science yield modeling with EXOSIMS , 2015, 1511.02869.

[40]  Dwight Moody,et al.  WFIRST coronagraph flight performance modeling , 2018, Astronomical Telescopes + Instrumentation.

[41]  Ruslan Belikov,et al.  TECHNIQUES FOR HIGH-CONTRAST IMAGING IN MULTI-STAR SYSTEMS. I. SUPER-NYQUIST WAVEFRONT CONTROL , 2015, 1501.01583.

[42]  Adam Burrows,et al.  Prospects for Directly Imaging Young Giant Planets at Optical Wavelengths , 2019, The Astrophysical Journal.

[43]  F. Bonnarel,et al.  The SIMBAD astronomical database. The CDS reference database for astronomical objects , 2000, astro-ph/0002110.

[44]  Matthew D. Lallo,et al.  Simulating point spread functions for the James Webb Space Telescope with WebbPSF , 2012, Other Conferences.

[45]  John E. Krist,et al.  PROPER: an optical propagation library for IDL , 2007, SPIE Optical Engineering + Applications.

[46]  Tyler Robinson,et al.  Atmospheric Retrieval for Direct Imaging Spectroscopy of Gas Giants in Reflected Light. II. Orbital Phase and Planetary Radius , 2016, 1612.00342.

[47]  John E. Krist,et al.  WFIRST coronagraph: digging dark-holes with partially corrected pupil phase , 2018, Astronomical Telescopes + Instrumentation.

[48]  M. Marley,et al.  Characterizing Rocky and Gaseous Exoplanets with 2-meter Class Space-based Coronagraphs , 2015, 1507.00777.