Thin‐Film‐Shaped Flexible Actuators

[1]  Yonggang Huang,et al.  Programming 3D curved mesosurfaces using microlattice designs , 2023, Science.

[2]  Zhaoqian Xie,et al.  Remote control of muscle-driven miniature robots with battery-free wireless optoelectronics , 2023, Science Robotics.

[3]  Yihui Zhang,et al.  A wrinkling-assisted strategy for controlled interface delamination in mechanically-guided 3D assembly , 2023, Journal of the mechanics and physics of solids.

[4]  Yihui Zhang,et al.  A soft microrobot with highly deformable 3D actuators for climbing and transitioning complex surfaces , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[5]  B. Yeom,et al.  High-performance electrified hydrogel actuators based on wrinkled nanomembrane electrodes for untethered insect-scale soft aquabots , 2022, Science Robotics.

[6]  Da Som Yang,et al.  Soft shape-programmable surfaces by fast electromagnetic actuation of liquid metal networks , 2022, Nature Communications.

[7]  Chen Xin,et al.  Magnetically encoded 3D mesostructure with high-order shape morphing and high-frequency actuation , 2022, National science review.

[8]  Il‐Kwon Oh,et al.  Knot‐Architectured Fabric Actuators Based on Shape Memory Fibers , 2022, Advanced Functional Materials.

[9]  M. Kaltenbrunner,et al.  Ultrafast small-scale soft electromagnetic robots , 2022, Nature Communications.

[10]  Qiu Yang,et al.  Programming Shape Memory Hydrogel to a Pre‐Encoded Static Deformation toward Hierarchical Morphological Information Encryption , 2022, Advanced Functional Materials.

[11]  M. Sitti,et al.  Soft-robotic ciliated epidermis for reconfigurable coordinated fluid manipulation , 2022, Science advances.

[12]  Qingyang Wu,et al.  Magnetic soft robotic bladder for assisted urination , 2022, Science advances.

[13]  Yihui Zhang,et al.  Assembly of complex 3D structures and electronics on curved surfaces , 2022, Science advances.

[14]  D. Viržonis,et al.  Development of Electrostatic Microactuators: 5-Year Progress in Modeling, Design, and Applications , 2022, Micromachines.

[15]  A. Veves,et al.  A strain-programmed patch for the healing of diabetic wounds , 2022, Nature Biomedical Engineering.

[16]  J. Lewis,et al.  Programmed shape-morphing into complex target shapes using architected dielectric elastomer actuators , 2022, Science advances.

[17]  C. Majidi,et al.  Untethered small-scale magnetic soft robot with programmable magnetization and integrated multifunctional modules , 2022, Science advances.

[18]  A. Potekhina,et al.  Liquid Crystal Elastomer Based Thermal Microactuators and Photothermal Microgrippers Using Lateral Bending Beams , 2022, Advanced Materials Technologies.

[19]  Xinjun Liu,et al.  A pipeline inspection robot for navigating tubular environments in the sub-centimeter scale , 2022, Science Robotics.

[20]  Yonggang Huang,et al.  Submillimeter-scale multimaterial terrestrial robots , 2022, Science Robotics.

[21]  M. Kovač,et al.  Aerial-aquatic robots capable of crossing the air-water boundary and hitchhiking on surfaces , 2022, Science Robotics.

[22]  M. Sitti,et al.  Wireless soft millirobots for climbing three-dimensional surfaces in confined spaces , 2022, Science advances.

[23]  Michael C. Cao,et al.  Cilia metasurfaces for electronically programmable microfluidic manipulation , 2022, Nature.

[24]  B. Caffo,et al.  Shell microelectrode arrays (MEAs) for brain organoids , 2022, bioRxiv.

[25]  Dejin Jiao,et al.  Programmable Morphing Hydrogels for Soft Actuators and Robots: From Structure Designs to Active Functions. , 2022, Accounts of chemical research.

[26]  P. Biehl,et al.  Cellulose‐based Soft Actuators , 2022, Macromolecular Materials and Engineering.

[27]  Yihui Zhang,et al.  Morphable three-dimensional electronic mesofliers capable of on-demand unfolding , 2022, Science China Materials.

[28]  W. Hong,et al.  Spontaneous and rapid electro-actuated snapping of constrained polyelectrolyte hydrogels , 2022, Science advances.

[29]  J. Joannopoulos,et al.  Single fibre enables acoustic fabrics via nanometre-scale vibrations , 2022, Nature.

[30]  Yihui Zhang,et al.  Highly-integrated, miniaturized, stretchable electronic systems based on stacked multilayer network materials , 2022, Science advances.

[31]  Jian Hu,et al.  Varied Alignment Methods and Versatile Actuations for Liquid Crystal Elastomers: A Review , 2022, Adv. Intell. Syst..

[32]  G. Lauder,et al.  An autonomously swimming biohybrid fish designed with human cardiac biophysics , 2022, Science.

[33]  J. Rossiter,et al.  Liquid-amplified zipping actuators for micro-air vehicles with transmission-free flapping , 2022, Science Robotics.

[34]  M. Kaltenbrunner,et al.  3D printing of resilient biogels for omnidirectional and exteroceptive soft actuators , 2022, Science Robotics.

[35]  Xuanhe Zhao,et al.  Magnetic Soft Materials and Robots. , 2022, Chemical reviews.

[36]  Yihui Zhang,et al.  Bioinspired elastomer composites with programmed mechanical and electrical anisotropies , 2022, Nature communications.

[37]  Yaoting Xue,et al.  The Dynamic Mortise-and-Tenon Interlock Assists Hydrated Soft Robots Toward Off-Road Locomotion , 2022, Research.

[38]  T. Pan,et al.  A programmable and skin temperature–activated electromechanical synergistic dressing for effective wound healing , 2022, Science advances.

[39]  Yonggang Huang,et al.  A dynamically reprogrammable surface with self-evolving shape morphing , 2021, Nature.

[40]  Ankit,et al.  Soft Actuator Materials for Electrically Driven Haptic Interfaces , 2021, Adv. Intell. Syst..

[41]  L. Ionov,et al.  Materials for Smart Soft Actuator Systems. , 2021, Chemical reviews.

[42]  Sung-hoon Ahn,et al.  Surface Nanopatterned Shape Memory Alloy (SMA)‐Based Photosensitive Artificial Muscle , 2021, Advanced Optical Materials.

[43]  Yong Zhu,et al.  Fast Thermal Actuators for Soft Robotics. , 2021, Soft robotics.

[44]  Huayan Pu,et al.  Legless soft robots capable of rapid, continuous, and steered jumping , 2021, Nature Communications.

[45]  Yadong Yin,et al.  Light-powered soft steam engines for self-adaptive oscillation and biomimetic swimming , 2021, Science Robotics.

[46]  Weiping Xie,et al.  Cephalopod‐Inspired Design of Photomechanically Modulated Display Systems for On‐Demand Fluorescent Patterning , 2021, Advanced materials.

[47]  Jongho Lee,et al.  A Locally Actuatable Soft Robotic Film for Actively Reconfiguring Shapes of Flexible Electronics. , 2021, Soft robotics.

[48]  Changhwan Kim,et al.  Vital signal sensing and manipulation of a microscale organ with a multifunctional soft gripper , 2021, Science Robotics.

[49]  D. Fang,et al.  Liquid Crystal Elastomer Metamaterials with Giant Biaxial Thermal Shrinkage for Enhancing Skin Regeneration , 2021, Advanced materials.

[50]  C. Keplinger,et al.  Liquid Crystal Elastomers with Enhanced Directional Actuation to Electric Fields , 2021, Advanced materials.

[51]  J. Aizenberg,et al.  Controlling Liquid Crystal Orientations for Programmable Anisotropic Transformations in Cellular Microstructures , 2021, Advanced materials.

[52]  Z. Wu,et al.  Self‐Shaping Soft Electronics Based on Patterned Hydrogel with Stencil‐Printed Liquid Metal , 2021, Advanced Functional Materials.

[53]  Mengdi Han,et al.  3D Temporary‐Magnetized Soft Robotic Structures for Enhanced Energy Harvesting , 2021, Advances in Materials.

[54]  Hongqiang Wang,et al.  A multifunctional robotic system toward moveable sensing and energy harvesting , 2021 .

[55]  Zhong Lin Wang,et al.  Bioinspired Triboelectric Soft Robot Driven by Mechanical Energy , 2021, Advanced Functional Materials.

[56]  Justin K. Yim,et al.  Electrostatic footpads enable agile insect-scale soft robots with trajectory control , 2021, Science Robotics.

[57]  Y Chen,et al.  Wearable Actuators: An Overview , 2021, Textiles.

[58]  Shane K. Mitchell,et al.  Spider‐Inspired Electrohydraulic Actuators for Fast, Soft‐Actuated Joints , 2021, Advanced science.

[59]  Dongping Sun,et al.  A Moisture‐Driven Actuator Based on Polydopamine‐Modified MXene/Bacterial Cellulose Nanofiber Composite Film , 2021, Advanced Functional Materials.

[60]  Yang Wang,et al.  Self-powered locomotion of a hydrogel water strider , 2021, Science Robotics.

[61]  Chiara Daraio,et al.  Robotic surfaces with reversible, spatiotemporal control for shape morphing and object manipulation , 2021, Science Robotics.

[62]  J. Aizenberg,et al.  Liquid-induced topological transformations of cellular microstructures , 2021, Nature.

[63]  Robert J. Wood,et al.  Biologically inspired electrostatic artificial muscles for insect-sized robots , 2021, Int. J. Robotics Res..

[64]  Kai Yu,et al.  Reconfigurable Three‐Dimensional Mesotructures of Spatially Programmed Liquid Crystal Elastomers and Their Ferromagnetic Composites , 2021, Advanced Functional Materials.

[65]  Hanbit Jin,et al.  Recent Advances and Opportunities of Active Materials for Haptic Technologies in Virtual and Augmented Reality , 2021, Advanced Functional Materials.

[66]  Shiqiang Zhu,et al.  Self-powered soft robot in the Mariana Trench , 2021, Nature.

[67]  N. Fang,et al.  Electromechanically reconfigurable optical nano-kirigami , 2021, Nature communications.

[68]  G. Arya,et al.  Microengineered Materials with Self‐Healing Features for Soft Robotics , 2021, Adv. Intell. Syst..

[69]  Yonggang Huang,et al.  Synergistic photoactuation of bilayered spiropyran hydrogels for predictable origami-like shape change , 2021 .

[70]  Jae‐Woong Jeong,et al.  Design Strategy for Transformative Electronic System toward Rapid, Bidirectional Stiffness Tuning using Graphene and Flexible Thermoelectric Device Interfaces , 2021, Advanced materials.

[71]  Y. Mei,et al.  Gaussian-preserved, non-volatile shape morphing in three-dimensional microstructures for dual-functional electronic devices , 2021, Nature Communications.

[72]  Zunfeng Liu,et al.  Progresses in Tensile, Torsional, and Multifunctional Soft Actuators , 2021, Advanced Functional Materials.

[73]  Jianxing Liu,et al.  Mechanics of unusual soft network materials with rotatable structural nodes , 2021 .

[74]  Hua Li,et al.  Multiple-Stimuli-Responsive and Cellulose Conductive Ionic Hydrogel for Smart Wearable Devices and Thermal Actuators. , 2020, ACS applied materials & interfaces.

[75]  Pooi See Lee,et al.  Locomotion of Miniature Soft Robots , 2020, Advanced materials.

[76]  P. Amiri,et al.  Fast and programmable locomotion of hydrogel-metal hybrids under light and magnetic fields , 2020, Science Robotics.

[77]  S. K. Mitchell,et al.  HASEL Artificial Muscles for a New Generation of Lifelike Robots—Recent Progress and Future Opportunities , 2020, Advanced materials.

[78]  Metin Sitti,et al.  Bioinspired cilia arrays with programmable nonreciprocal motion and metachronal coordination , 2020, Science Advances.

[79]  Jiuyang Zhang,et al.  Liquid metal based electrical driven shape memory polymers , 2020 .

[80]  Zhuo Liu,et al.  Refreshable Braille Display System Based on Triboelectric Nanogenerator and Dielectric Elastomer , 2020, Advanced Functional Materials.

[81]  W. Hong,et al.  Distributed Electric Field Induces Orientations of Nanosheets to Prepare Hydrogels with Elaborate Ordered Structures and Programmed Deformations , 2020, Advanced materials.

[82]  H. Shea,et al.  Untethered Feel‐Through Haptics Using 18‐µm Thick Dielectric Elastomer Actuators , 2020, Advanced Functional Materials.

[83]  D. Gracias,et al.  Gastrointestinal-resident, shape-changing microdevices extend drug release in vivo , 2020, Science Advances.

[84]  Yong‐Lai Zhang,et al.  Laser‐Induced Graphene Tapes as Origami and Stick‐On Labels for Photothermal Manipulation via Marangoni Effect , 2020, Advanced Functional Materials.

[85]  Yue Zhao,et al.  Liquid Crystal Polymer‐Based Soft Robots , 2020, Adv. Intell. Syst..

[86]  Rebecca Kramer-Bottiglio,et al.  Roboticizing fabric by integrating functional fibers , 2020, Proceedings of the National Academy of Sciences.

[87]  Samuel J. Avis,et al.  Reconfiguration of Multistable 3D Ferromagnetic Mesostructures Guided by Energy Landscape Surveys , 2020 .

[88]  S. Cai,et al.  Three-dimensional printing of functionally graded liquid crystal elastomer , 2020, Science Advances.

[89]  S.-H. Byun,et al.  Materials and manufacturing strategies for mechanically transformative electronics , 2020 .

[90]  Guilin Yang,et al.  Asymmetric elastoplasticity of stacked graphene assembly actualizes programmable untethered soft robotics , 2020, Nature Communications.

[91]  J. Leng,et al.  Light activated shape memory polymers and composites: A review , 2020 .

[92]  E. Filipov,et al.  Elastically and Plastically Foldable Electrothermal Micro‐Origami for Controllable and Rapid Shape Morphing , 2020, Advanced Functional Materials.

[93]  H. Shea,et al.  Multimode Hydraulically Amplified Electrostatic Actuators for Wearable Haptics , 2020, Advanced materials.

[94]  Guang-Zhong Yang,et al.  Microtentacle Actuators Based on Shape Memory Alloy Smart Soft Composite , 2020, Advanced Functional Materials.

[95]  H. Qi,et al.  Magneto‐Mechanical Metamaterials with Widely Tunable Mechanical Properties and Acoustic Bandgaps , 2020, Advanced Functional Materials.

[96]  G. Schatz,et al.  Supramolecular–covalent hybrid polymers for light-activated mechanical actuation , 2020, Nature Materials.

[97]  Guoyong Mao,et al.  Soft electromagnetic actuators , 2020, Science Advances.

[98]  D. Gracias,et al.  Untethered Grippers for Active Single Cell Biopsy. , 2020, Nano letters.

[99]  B. Nelson,et al.  Magnetic cilia carpets with programmable metachronal waves , 2020, Nature Communications.

[100]  Yihui Zhang,et al.  Laser‐Induced Graphene for Electrothermally Controlled, Mechanically Guided, 3D Assembly and Human–Soft Actuators Interaction , 2020, Advanced materials.

[101]  Yihui Zhang,et al.  Soft three-dimensional network materials with rational bio-mimetic designs , 2020, Nature Communications.

[102]  Jinhua Zhang,et al.  Tunable, Flexible, and Resilient Robots Driven by an Electrostatic Actuator , 2020, Adv. Intell. Syst..

[103]  Thomas J. Wallin,et al.  Autonomic perspiration in 3D-printed hydrogel actuators , 2020, Science Robotics.

[104]  Marina Pilz da Cunha,et al.  A Soft Transporter Robot Fueled by Light , 2020, Advanced science.

[105]  Y. Mei,et al.  Inorganic Stimuli‐Responsive Nanomembranes for Small‐Scale Actuators and Robots , 2020, Adv. Intell. Syst..

[106]  T. Ware,et al.  Shape-morphing living composites , 2020, Science Advances.

[107]  Wei Chen,et al.  Flexible Actuators for Soft Robotics , 2019, Adv. Intell. Syst..

[108]  Yiming Liang,et al.  Electro-mechanically controlled assembly of reconfigurable 3D mesostructures and electronic devices based on dielectric elastomer platforms , 2019, National science review.

[109]  Yon Visell,et al.  Fluidic Fabric Muscle Sheets for Wearable and Soft Robotics , 2019, Soft robotics.

[110]  A. Spence,et al.  Leveraging elastic instabilities for amplified performance: Spine-inspired high-speed and high-force soft robots , 2018, Science Advances.

[111]  Yoan Civet,et al.  An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators , 2019, Science Robotics.

[112]  H. Shea,et al.  High Force Density Textile Electrostatic Clutch , 2019, Advanced Materials Technologies.

[113]  Jie Yin,et al.  Programmable active kirigami metasheets with more freedom of actuation , 2019, Proceedings of the National Academy of Sciences.

[114]  Lining Sun,et al.  Soft and Fast Hopping-Running Robot with Speed of Six Times Its Body Length Per Second. , 2019, Soft robotics.

[115]  Sung-hoon Ahn,et al.  Shape Memory Alloy-Based Soft Finger with Changeable Bending Length Using Targeted Variable Stiffness. , 2019, Soft robotics.

[116]  Robert J. Wood,et al.  Controlled flight of a microrobot powered by soft artificial muscles , 2019, Nature.

[117]  Xuanhe Zhao,et al.  Soft microbots programmed by nanomagnets , 2019, Nature.

[118]  Bradley J. Nelson,et al.  Nanomagnetic encoding of shape-morphing micromachines , 2019, Nature.

[119]  Laurent Pilon,et al.  Artificial phototropism for omnidirectional tracking and harvesting of light , 2019, Nature Nanotechnology.

[120]  Xin Wu,et al.  Electro-thermally driven flexible robot arms based on stacking-controlled graphite nanocomposites , 2019, Carbon.

[121]  Rong Huang,et al.  A Periodic Deformation Mechanism of a Soft Actuator for Crawling and Grasping , 2019, Advanced Materials Technologies.

[122]  Sung-hoon Ahn,et al.  Laser Controlled 65 Micrometer Long Microrobot Made of Ni‐Ti Shape Memory Alloy , 2019, Advanced Materials Technologies.

[123]  Haiwen Luan,et al.  Skin-integrated wireless haptic interfaces for virtual and augmented reality , 2019, Nature.

[124]  Yang Wang,et al.  Electrically controlled liquid crystal elastomer–based soft tubular actuator with multimodal actuation , 2019, Science Advances.

[125]  Qiji Ze,et al.  Magnetic Shape Memory Polymers with Integrated Multifunctional Shape Manipulation , 2019, Advanced materials.

[126]  Y. Gogotsi,et al.  Electrochemical Actuators Based on Two-Dimensional Ti3C2Tx (MXene). , 2019, Nano letters (Print).

[127]  Quang Van Duong,et al.  Audio-Tactile Skinny Buttons for Touch User Interfaces , 2019, Scientific Reports.

[128]  O. Schmidt,et al.  3D Self‐Assembled Microelectronic Devices: Concepts, Materials, Applications , 2019, Advanced materials.

[129]  Fei Xiao,et al.  Multi-stimuli-responsive programmable biomimetic actuator , 2019, Nature Communications.

[130]  Chiara Daraio,et al.  Untethered soft robotic matter with passive control of shape morphing and propulsion , 2019, Science Robotics.

[131]  Tao Xie,et al.  4D Printing of Digital Shape Memory Polymer with Tunable High Performance. , 2019, ACS applied materials & interfaces.

[132]  Ronald S. Fearing,et al.  Insect-scale fast moving and ultrarobust soft robot , 2019, Science Robotics.

[133]  B. Han,et al.  Light-Responsive Actuators Based on Graphene , 2019, Front. Chem..

[134]  Yue Zhao,et al.  Biomimetic Locomotion of Electrically Powered “Janus” Soft Robots Using a Liquid Crystal Polymer , 2019, Advanced materials.

[135]  M. Sitti,et al.  Multi-functional soft-bodied jellyfish-like swimming , 2019, Nature Communications.

[136]  Yi Jiang,et al.  Leaf-inspired multiresponsive MXene-based actuator for programmable smart devices , 2019, Science Advances.

[137]  Chihyung Ahn,et al.  Bioinspired Design of Light‐Powered Crawling, Squeezing, and Jumping Untethered Soft Robot , 2019, Advanced Materials Technologies.

[138]  Hugh Alan Bruck,et al.  High frequency, low power, electrically actuated shape memory alloy MEMS bimorph thermal actuators , 2019, Journal of Micromechanics and Microengineering.

[139]  R. Hayward,et al.  Light‐Driven Shape Morphing, Assembly, and Motion of Nanocomposite Gel Surfers , 2019, Advanced materials.

[140]  Michael T. Tolley,et al.  Design Considerations for 3D Printed, Soft, Multimaterial Resistive Sensors for Soft Robotics , 2019, Front. Robot. AI.

[141]  Tianqi Xu,et al.  Millimeter-scale flexible robots with programmable three-dimensional magnetization and motions , 2019, Science Robotics.

[142]  Yu Cao,et al.  Climbing-inspired twining electrodes using shape memory for peripheral nerve stimulation and recording , 2019, Science Advances.

[143]  Wulin Zhu,et al.  Multifunctional Janus Microplates Arrays Actuated by Magnetic Fields for Water/Light Switches and Bio‐Inspired Assimilatory Coloration , 2019, Advanced materials.

[144]  Aobo Li,et al.  Integrating microsystems with metamaterials towards metadevices , 2019, Microsystems & Nanoengineering.

[145]  O. Velev,et al.  3D‐Printed Silicone Soft Architectures with Programmed Magneto‐Capillary Reconfiguration , 2019, Advanced Materials Technologies.

[146]  C. Majidi,et al.  Highly Dynamic Shape Memory Alloy Actuator for Fast Moving Soft Robots , 2019, Advanced Materials Technologies.

[147]  Ying Li,et al.  Plasmonic‐Assisted Graphene Oxide Artificial Muscles , 2018, Advanced materials.

[148]  Gang Sun,et al.  Bioinspired Smart Moisture Actuators Based on Nanoscale Cellulose Materials and Porous, Hydrophilic EVOH Nanofibrous Membranes. , 2018, ACS applied materials & interfaces.

[149]  Yonggang Huang,et al.  Freestanding 3D Mesostructures, Functional Devices, and Shape‐Programmable Systems Based on Mechanically Induced Assembly with Shape Memory Polymers , 2018, Advanced materials.

[150]  Ehsan Hajiesmaili,et al.  Reconfigurable shape-morphing dielectric elastomers using spatially varying electric fields , 2018, Nature Communications.

[151]  Jonathan Rossiter,et al.  Electro-ribbon actuators and electro-origami robots , 2018, Science Robotics.

[152]  Carmel Majidi,et al.  Chasing biomimetic locomotion speeds: Creating untethered soft robots with shape memory alloy actuators , 2018, Science Robotics.

[153]  Xiangyang Zhu,et al.  Soft wall-climbing robots , 2018, Science Robotics.

[154]  Jongho Lee,et al.  Robotic Flexible Electronics with Self-Bendable Films. , 2018, Soft robotics.

[155]  Kent J. Griffith,et al.  Lattice-contraction triggered synchronous electrochromic actuator , 2018, Nature Communications.

[156]  Tongqing Lu,et al.  Fine tuning the electro-mechanical response of dielectric elastomers , 2018, Applied Physics Letters.

[157]  Faranak Manteghi,et al.  Design of a remote-control drug delivery implantable chip for cancer local on demand therapy using ionic polymer metal composite actuator. , 2018, Journal of the mechanical behavior of biomedical materials.

[158]  Daniel M. Vogt,et al.  Compact Dielectric Elastomer Linear Actuators , 2018, Advanced Functional Materials.

[159]  Yonggang Huang,et al.  Mechanically active materials in three-dimensional mesostructures , 2018, Science Advances.

[160]  Seyedhamidreza Alaie,et al.  Laser Cutting as a Rapid Method for Fabricating Thin Soft Pneumatic Actuators and Robots. , 2018, Soft robotics.

[161]  Il-Kwon Oh,et al.  An Electroactive and Transparent Haptic Interface Utilizing Soft Elastomer Actuators with Silver Nanowire Electrodes. , 2018, Small.

[162]  Jianzhong Fu,et al.  Programmed Deformations of 3D‐Printed Tough Physical Hydrogels with High Response Speed and Large Output Force , 2018, Advanced Functional Materials.

[163]  Q. Pei,et al.  Refreshable Tactile Display Based on a Bistable Electroactive Polymer and a Stretchable Serpentine Joule Heating Electrode. , 2018, ACS applied materials & interfaces.

[164]  Zhiguang Liu,et al.  Nano-kirigami with giant optical chirality , 2018, Science Advances.

[165]  D. Floreano,et al.  Soft Robotic Grippers , 2018, Advanced materials.

[166]  Guo-Hua Feng,et al.  Investigation of tactile bump array actuated with ionic polymer–metal composite cantilever beams for refreshable braille display application , 2018, Sensors and Actuators A: Physical.

[167]  Shawn A. Chester,et al.  Printing ferromagnetic domains for untethered fast-transforming soft materials , 2018, Nature.

[168]  D. Wiersma,et al.  Light Robots: Bridging the Gap between Microrobotics and Photomechanics in Soft Materials , 2018, Advanced materials.

[169]  M. Sitti,et al.  Self‐Sensing Paper Actuators Based on Graphite–Carbon Nanotube Hybrid Films , 2018, Advanced science.

[170]  Kristina Shea,et al.  Harnessing bistability for directional propulsion of soft, untethered robots , 2018, Proceedings of the National Academy of Sciences.

[171]  Liliana Stan,et al.  Reconfigurable Vanadium Dioxide Nanomembranes and Microtubes with Controllable Phase Transition Temperatures. , 2018, Nano letters.

[172]  Y. Mei,et al.  Stimuli-responsive and on-chip nanomembrane micro-rolls for enhanced macroscopic visual hydrogen detection , 2018, Science Advances.

[173]  J. Lewis,et al.  Actuators: 3D Printing of Liquid Crystal Elastomeric Actuators with Spatially Programed Nematic Order (Adv. Mater. 10/2018) , 2018 .

[174]  W. Voit,et al.  Electronic Whiskers: 3D, Reconfigurable, Multimodal Electronic Whiskers via Directed Air Assembly (Adv. Mater. 11/2018) , 2018 .

[175]  Tingyu Cheng,et al.  Soft Artificial Bladder Detrusor , 2018, Advanced healthcare materials.

[176]  Weiqiu Chen,et al.  Soft Ultrathin Electronics Innervated Adaptive Fully Soft Robots , 2018, Advanced materials.

[177]  Jakob A. Faber,et al.  3D printing of robotic soft actuators with programmable bioinspired architectures , 2018, Nature Communications.

[178]  Yonggang Huang,et al.  A double perturbation method of postbuckling analysis in 2D curved beams for assembly of 3D ribbon-shaped structures , 2018 .

[179]  Seyed M. Mirvakili,et al.  Artificial Muscles: Mechanisms, Applications, and Challenges , 2018, Advanced materials.

[180]  Metin Sitti,et al.  Small-scale soft-bodied robot with multimodal locomotion , 2018, Nature.

[181]  Shane K. Mitchell,et al.  Hydraulically amplified self-healing electrostatic actuators with muscle-like performance , 2018, Science.

[182]  Marc Z. Miskin,et al.  Graphene-based bimorphs for micron-sized, autonomous origami machines , 2018, Proceedings of the National Academy of Sciences.

[183]  Jizhou Song,et al.  Programming a crystalline shape memory polymer network with thermo- and photo-reversible bonds toward a single-component soft robot , 2018, Science Advances.

[184]  Shu Yang,et al.  Universal inverse design of surfaces with thin nematic elastomer sheets , 2017, Proceedings of the National Academy of Sciences.

[185]  Ankit,et al.  Highly Transparent and Integrable Surface Texture Change Device for Localized Tactile Feedback. , 2018, Small.

[186]  Owies M. Wani,et al.  Light-Driven, Caterpillar-Inspired Miniature Inching Robot. , 2018, Macromolecular rapid communications.

[187]  Yue Zhao,et al.  Non-Uniform Optical Inscription of Actuation Domains in a Liquid Crystal Polymer of Uniaxial Orientation: An Approach to Complex and Programmable Shape Changes. , 2017, Angewandte Chemie.

[188]  Wei Chen,et al.  Electrically and Sunlight‐Driven Actuator with Versatile Biomimetic Motions Based on Rolled Carbon Nanotube Bilayer Composite , 2017 .

[189]  Yong‐Lai Zhang,et al.  Direct Laser Writing of Superhydrophobic PDMS Elastomers for Controllable Manipulation via Marangoni Effect , 2017 .

[190]  Sara Nocentini,et al.  Photonic Microhand with Autonomous Action , 2017, Advanced materials.

[191]  H. Shea,et al.  Flexible Active Skin: Large Reconfigurable Arrays of Individually Addressed Shape Memory Polymer Actuators , 2017 .

[192]  Robert J. Wood,et al.  An Additive Millimeter‐Scale Fabrication Method for Soft Biocompatible Actuators and Sensors , 2017, Advanced Materials Technologies.

[193]  Li Wen,et al.  A biorobotic adhesive disc for underwater hitchhiking inspired by the remora suckerfish , 2017, Science Robotics.

[194]  ChangKyu Yoon,et al.  DNA sequence–directed shape change of photopatterned hydrogels via high-degree swelling , 2017, Science.

[195]  W. Matusik,et al.  3D-Printed Self-Folding Electronics. , 2017, ACS applied materials & interfaces.

[196]  W. Hong,et al.  Cooperative deformations of periodically patterned hydrogels , 2017, Science Advances.

[197]  M. Chhowalla,et al.  Metallic molybdenum disulfide nanosheet-based electrochemical actuators , 2017, Nature.

[198]  Arri Priimagi,et al.  Self‐Regulating Iris Based on Light‐Actuated Liquid Crystal Elastomer , 2017, Advanced materials.

[199]  E. W. Meijer,et al.  Making waves in a photoactive polymer film , 2017, Nature.

[200]  Hiroshi Ishii,et al.  Harnessing the hygroscopic and biofluorescent behaviors of genetically tractable microbial cells to design biohybrid wearables , 2017, Science Advances.

[201]  Zhenghua An,et al.  Deterministic Self‐Rolling of Ultrathin Nanocrystalline Diamond Nanomembranes for 3D Tubular/Helical Architecture , 2017, Advanced materials.

[202]  M. Sitti,et al.  Soft Actuators for Small‐Scale Robotics , 2017, Advanced materials.

[203]  Tingyu Cheng,et al.  Fast-moving soft electronic fish , 2017, Science Advances.

[204]  David Torres,et al.  Maximizing the performance of photothermal actuators by combining smart materials with supplementary advantages , 2017, Science Advances.

[205]  Ying Liu,et al.  Sequential self-folding of polymer sheets , 2017, Science Advances.

[206]  Jizhou Song,et al.  Ultrafast Digital Printing toward 4D Shape Changing Materials , 2017, Advanced materials.

[207]  Fei Wang,et al.  Graphene‐Based Polymer Bilayers with Superior Light‐Driven Properties for Remote Construction of 3D Structures , 2017, Advanced science.

[208]  James C. Weaver,et al.  Soft robotic sleeve supports heart function , 2017, Science Translational Medicine.

[209]  Sung-Hoon Ahn,et al.  Shape Memory Alloy-Based Soft Gripper with Variable Stiffness for Compliant and Effective Grasping. , 2017, Soft robotics.

[210]  Yihui Zhang,et al.  Mechanics of Fractal-Inspired Horseshoe Microstructures for Applications in Stretchable Electronics , 2016 .

[211]  Shu Yang,et al.  Guided Folding of Nematic Liquid Crystal Elastomer Sheets into 3D via Patterned 1D Microchannels , 2016, Advanced materials.

[212]  Weihua Zhang,et al.  Multi-Direction-Tunable Three-Dimensional Meta-Atoms for Reversible Switching between Midwave and Long-Wave Infrared Regimes. , 2016, Nano letters.

[213]  Metin Sitti,et al.  High-Performance Multiresponsive Paper Actuators. , 2016, ACS nano.

[214]  Salvador Pané,et al.  Soft micromachines with programmable motility and morphology , 2016, Nature Communications.

[215]  Gursel Alici,et al.  Soft and smart modular structures actuated by shape memory alloy (SMA) wires as tentacles of soft robots , 2016 .

[216]  Jeong-Woo Choi,et al.  Phototactic guidance of a tissue-engineered soft-robotic ray , 2016, Science.

[217]  Dirk J. Broer,et al.  A chaotic self-oscillating sunlight-driven polymer actuator , 2016, Nature Communications.

[218]  Kazuhiro Yoshida,et al.  An MEMS-based multiple electro-rheological bending actuator system with an alternating pressure source , 2016 .

[219]  G. Lubineau,et al.  Light‐Activated Rapid‐Response Polyvinylidene‐Fluoride‐Based Flexible Films , 2016, Advanced materials.

[220]  G. Whitesides,et al.  Buckling Pneumatic Linear Actuators Inspired by Muscle , 2016 .

[221]  D. Kaur,et al.  Shape memory alloy thin films and heterostructures for MEMS applications: A review , 2016 .

[222]  Huanyu Cheng,et al.  A nonlinear mechanics model of bio-inspired hierarchical lattice materials consisting of horseshoe microstructures. , 2016, Journal of the mechanics and physics of solids.

[223]  G. Whitesides,et al.  Electrically Activated Paper Actuators , 2016 .

[224]  Elisabetta A. Matsumoto,et al.  Biomimetic 4D printing. , 2016, Nature materials.

[225]  Yongsheng Chen,et al.  Construction of a Fish‐like Robot Based on High Performance Graphene/PVDF Bimorph Actuation Materials , 2016, Advanced science.

[226]  Ritu Raman,et al.  Optogenetic skeletal muscle-powered adaptive biological machines , 2016, Proceedings of the National Academy of Sciences.

[227]  Sung-Hoon Ahn,et al.  35 Hz shape memory alloy actuator with bending-twisting mode , 2016, Scientific Reports.

[228]  Jong-Oh Park,et al.  Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery , 2016 .

[229]  Xuemei Sun,et al.  Tunable Photothermal Actuators Based on a Pre-programmed Aligned Nanostructure. , 2016, Journal of the American Chemical Society.

[230]  D. Floreano,et al.  Versatile Soft Grippers with Intrinsic Electroadhesion Based on Multifunctional Polymer Actuators , 2016, Advanced materials.

[231]  Tongqing Lu,et al.  Electro-mechanical coupling bifurcation and bulging propagation in a cylindrical dielectric elastomer tube , 2015 .

[232]  Min-Ho Kang,et al.  Vertically Integrated Multiple Nanowire Field Effect Transistor. , 2015, Nano letters.

[233]  Hongzhi Wang,et al.  Origami-inspired active graphene-based paper for programmable instant self-folding walking devices , 2015, Science Advances.

[234]  Wei Zhang,et al.  Large-Deformation Curling Actuators Based on Carbon Nanotube Composite: Advanced-Structure Design and Biomimetic Application. , 2015, ACS nano.

[235]  Yonggang Huang,et al.  A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes , 2015, Proceedings of the National Academy of Sciences.

[236]  Michele Dipalo,et al.  Micromotors with asymmetric shape that efficiently convert light into work by thermocapillary effects , 2015, Nature Communications.

[237]  D. Rus,et al.  Design, fabrication and control of soft robots , 2015, Nature.

[238]  Robin H. A. Ras,et al.  Sensitive Humidity‐Driven Reversible and Bidirectional Bending of Nanocellulose Thin Films as Bio‐Inspired Actuation , 2015 .

[239]  Jung Woo Lee,et al.  Soft network composite materials with deterministic and bio-inspired designs , 2015, Nature Communications.

[240]  T. White,et al.  Voxelated liquid crystal elastomers , 2015, Science.

[241]  Hye Rin Kwag,et al.  Self-Folding Thermo-Magnetically Responsive Soft Microgrippers , 2015, ACS applied materials & interfaces.

[242]  Ha Uk Chung,et al.  Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling , 2015, Science.

[243]  Qingwei Li,et al.  Large-strain, multiform movements from designable electrothermal actuators based on large highly anisotropic carbon nanotube sheets. , 2015, ACS nano.

[244]  B. Mazzolai,et al.  Toward a New Generation of Electrically Controllable Hygromorphic Soft Actuators , 2015, Advanced materials.

[245]  Urmas Johanson,et al.  Ionic and Capacitive Artificial Muscle for Biomimetic Soft Robotics , 2015 .

[246]  Thomas C. Hull,et al.  Programming Reversibly Self‐Folding Origami with Micropatterned Photo‐Crosslinkable Polymer Trilayers , 2015, Advanced materials.

[247]  Leonid Ionov,et al.  Hydrogel-based actuators: possibilities and limitations , 2014 .

[248]  Michael C. McAlpine,et al.  3D printed quantum dot light-emitting diodes. , 2014, Nano letters.

[249]  Samuel M. Felton,et al.  A method for building self-folding machines , 2014, Science.

[250]  Han Yan,et al.  Electrostatic pull-in instability in MEMS/NEMS: A review , 2014 .

[251]  Hye Rin Kwag,et al.  Stimuli-responsive theragrippers for chemomechanical controlled release. , 2014, Angewandte Chemie.

[252]  Ritu Raman,et al.  Three-dimensionally printed biological machines powered by skeletal muscle , 2014, Proceedings of the National Academy of Sciences.

[253]  Martin Leary,et al.  A review of shape memory alloy research, applications and opportunities , 2014 .

[254]  L. Chua,et al.  Powerful, Multifunctional Torsional Micromuscles Activated by Phase Transition , 2014, Advanced materials.

[255]  Kyung-In Jang,et al.  3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium , 2014, Nature Communications.

[256]  Lirong Kong,et al.  Carbon Nanotube and Graphene‐based Bioinspired Electrochemical Actuators , 2014, Advanced materials.

[257]  David Zarrouk,et al.  Photoactuators and motors based on carbon nanotubes with selective chirality distributions , 2014, Nature Communications.

[258]  A. Aabloo,et al.  Nanocarbon based ionic actuators—a review , 2013 .

[259]  E. Palleau,et al.  Reversible patterning and actuation of hydrogels by electrically assisted ionoprinting , 2013, Nature Communications.

[260]  E. Demaine,et al.  Self-folding with shape memory composites† , 2013 .

[261]  J. Greener,et al.  Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses , 2013, Nature Communications.

[262]  Shuwen Hu,et al.  “Smart” Materials Based on Cellulose: A Review of the Preparations, Properties, and Applications , 2013, Materials.

[263]  A. Kalloo,et al.  Biopsy with Thermally‐Responsive Untethered Microtools , 2013, Advanced materials.

[264]  Kai Liu,et al.  Giant-amplitude, high-work density microactuators with phase transition activated nanolayer bimorphs. , 2012, Nano letters.

[265]  R. Bashir,et al.  Development of Miniaturized Walking Biological Machines , 2012, Scientific Reports.

[266]  S. Bedair,et al.  Piezoelectric PZT MEMS technologies for small-scale robotics and RF applications , 2012 .

[267]  Filip Ilievski,et al.  Multigait soft robot , 2011, Proceedings of the National Academy of Sciences.

[268]  Howon Lee,et al.  Programming magnetic anisotropy in polymeric microactuators. , 2011, Nature materials.

[269]  J. Rogers,et al.  Synthesis, assembly and applications of semiconductor nanomembranes , 2011, Nature.

[270]  R. Vaia,et al.  Photodriven, Flexural–Torsional Oscillation of Glassy Azobenzene Liquid Crystal Polymer Networks , 2011 .

[271]  Jong-Hyun Ahn,et al.  Graphene-based bimorph microactuators. , 2011, Nano letters.

[272]  Howon Lee,et al.  First jump of microgel; actuation speed enhancement by elastic instability , 2010, 1008.4078.

[273]  Ying Hu,et al.  Electromechanical actuation with controllable motion based on a single-walled carbon nanotube and natural biopolymer composite. , 2010, ACS nano.

[274]  Armando Rúa,et al.  Bending in VO2-coated microcantilevers suitable for thermally activated actuators , 2010 .

[275]  Dominiek Reynaerts,et al.  Pneumatic and hydraulic microactuators: a review , 2010 .

[276]  D. Tasis,et al.  Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties , 2010 .

[277]  Alex Zettl,et al.  Surface tension mediated conversion of light to work. , 2009, Journal of the American Chemical Society.

[278]  Paul Muralt,et al.  Piezoelectric Thin Films for Sensors, Actuators, and Energy Harvesting , 2009 .

[279]  D. Gracias,et al.  Microassembly based on hands free origami with bidirectional curvature. , 2009, Applied physics letters.

[280]  B. K. Juluri,et al.  A mechanical actuator driven electrochemically by artificial molecular muscles. , 2009, ACS nano.

[281]  David H Gracias,et al.  Tetherless thermobiochemically actuated microgrippers , 2009, Proceedings of the National Academy of Sciences.

[282]  Oliver G. Schmidt,et al.  Versatile Approach for Integrative and Functionalized Tubes by Strain Engineering of Nanomembranes on Polymers , 2008 .

[283]  Heung Cho Ko,et al.  A hemispherical electronic eye camera based on compressible silicon optoelectronics , 2008, Nature.

[284]  Shoushan Fan,et al.  Electrothermal actuation based on carbon nanotube network in silicone elastomer , 2008 .

[285]  Yen-Wen Lu,et al.  Microhand for biological applications , 2006 .

[286]  Ximin He,et al.  Electrochemical actuator based on monolithic polypyrrole–TiO2 nanoparticle composite film , 2006 .

[287]  Von Howard Ebron,et al.  Fuel-Powered Artificial Muscles , 2006, Science.

[288]  K. R. Atkinson,et al.  Strong, Transparent, Multifunctional, Carbon Nanotube Sheets , 2005, Science.

[289]  Liangbing Hu,et al.  Percolation in transparent and conducting carbon nanotube networks , 2004 .

[290]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.