Optical absorption and determination of band offset in strain-balanced GaInP/InAsP multiple quantum wells grown by low-pressure metalorganic vapour phase epitaxy

We report on optical absorption of the interband transitions in zero-net strained multiple quantum wells (MQW) grown by low-pressure metalorganic vapour phase epitaxy (LP-MOVPE), using tertiarybutylarsine as a group V source. Sharp interfaces are obtained using a growth interruption procedure. Analysis of this procedure with different interruption times leads to the same optimal times as those obtained for InP/InAsP superlattices grown in the same reactor. We have achieved the growth of modulation-free strain-balanced heterostructures, as indicated by cross-sectional transmission electron microscopy. High-resolution x-ray diffraction and optical absorption analysis demonstrate the high crystallographic and optical quality of these structures. The absorption spectrum of an x = 0.06, y = 0.14 sample was accurately fitted using the Bastard/Marzin model, and a strained conduction band offset of was deduced. This corresponds to about of the total strained bandgap difference.

[1]  R. Leonelli,et al.  Structural and optical properties of strain‐relaxed InAsP/InP heterostructures grown by metalorganic vapor phase epitaxy on InP(001) using tertiarybutylarsine , 1996 .

[2]  Isnard,et al.  Self-consistent determination of the band offsets in InAsxP1-x/InP strained-layer quantum wells and the bowing parameter of bulk InAsxP1-x. , 1996, Physical review. B, Condensed matter.

[3]  A. D. Smith,et al.  Temperature and strain dependence of the roughening transition in III‐V semiconductor and SiGe epitaxial growth , 1995 .

[4]  A. Kasukawa,et al.  InAsP/InGaP All-Ternary Strain-Compensated Multiple Quantum Wells and Their Application to Long-Wavelength Lasers , 1995, Seventh International Conference on Indium Phosphide and Related Materials.

[5]  J. T. Graham,et al.  Interfaces of InAsP/InP multiple quantum wells grown by metalorganic vapor phase epitaxy , 1994 .

[6]  P. Yu,et al.  Strain compensated InAsP/InP/InGaP multiple quantum well for 1.5 μm wavelength , 1994 .

[7]  A. D. Smith,et al.  Optimization of growth conditions for strain compensated Ga0.32In0.68As/Ga0.61In0.39As multiple quantum wells , 1994 .

[8]  A. Mircea,et al.  Self‐induced laterally modulated GaInP/InAsP structure grown by metal‐organic vapor‐phase epitaxy , 1994 .

[9]  R. Leonelli,et al.  Misfit strain, relaxation, and band‐gap shift in GaxIn1−xP/InP epitaxial layers , 1994 .

[10]  R. Leonelli,et al.  Band alignment in GaxIn1−xP/InP heterostructures , 1994 .

[11]  R. Leonelli,et al.  Surface morphology and lattice distortion of heteroepitaxial GaInP on InP , 1993 .

[12]  T. K. Woodward,et al.  Growth of strain‐balanced InAsP/InGaP superlattices for 1.06 μm optical modulators , 1993 .

[13]  T. K. Woodward,et al.  Multiple quantum well light modulators for the 1.06 μm range on InP substrates: InxGa1−xAsyP1−y/InP, InAsyP1−y/InP, and coherently strained InAsyP1−y/InxGa1−xP , 1992 .

[14]  P. Yu,et al.  Optimization of multiple quantum well structures for waveguide electroabsorption modulators , 1991 .

[15]  C. A. Tran,et al.  Effet des paramètres de croissance sur les couches épitaxiales d'InP obtenues par MOCVD (metal-organic chemical vapor deposition) à basse pression , 1991 .

[16]  B. Wessels,et al.  InAs/InP strained single quantum wells grown by atmospheric pressure organometallic vapor phase epitaxy , 1990 .

[17]  S. Chu,et al.  Lateral thickness modulation of InGaAs/InP quantum wells grown by metalorganic molecular beam epitaxy , 1994 .