Algebraic Solutions to Recursion Schemes

Abstract The main problem in recursive scheme theory is determining how to solve a scheme and express its solution. Up to now this was always achieved by adding restrictive hypotheses either on the schemes themselves, or on the domains where they take their values, e.g., assuming the domains have a metric or an order structure and are complete with respect to this structure, or are iterative. Here we develop a strictly algebraic theory of recursion schemes with second-order substitutions. As it is strictly algebraic, the theory applies not only to all recursion schemes on trees, but also to recursion schemes on arbitrary algebras presented in the usual way by generators and relations. In particular, this gives a semantics for nondeterminism and for process algebras.

[1]  Suad Alagic Natural State Transformations , 1975, J. Comput. Syst. Sci..

[2]  Michael A. Arbib,et al.  The Pattern-of-Calls Expansion Is the Canonical Fixpoint for Recursive Definitions , 1982, JACM.

[3]  Maurice Nivat,et al.  Metric Interpretations of Infinite Trees and Semantics of non Deterministic Recursive Programs , 1980, Theor. Comput. Sci..

[4]  J. Engelfriet,et al.  IO and OI , 1975 .

[5]  Maurice Nivat,et al.  On Rational Expressions Representing Infinite Rational Trees: Application to the Structure of Flow Charts , 1979, MFCS.

[6]  Christopher Strachey,et al.  Toward a mathematical semantics for computer languages , 1971 .

[7]  José Meseguer,et al.  Varieties of chain-complete algebras☆ , 1980 .

[8]  Joost Engelfriet,et al.  SOME OPEN QUESTIONS AND RECENT RESULTS ON TREE TRANSDUCERS AND TREE LANGUAGES , 1980 .

[9]  D. B. Benson,et al.  Functional Behvior of Nondeterministic and Concurrent Programs , 1984, Inf. Control..

[10]  Jirí Adámek,et al.  Tree Constructions of Free Continuous Algebras , 1982, J. Comput. Syst. Sci..

[11]  Werner Damm,et al.  The IO- and OI-Hierarchies , 1982, Theor. Comput. Sci..

[12]  Samson Abramsky,et al.  On Semantic Foundations for Applicative Multiprogramming , 1983, ICALP.

[13]  Gérard Boudol,et al.  Une Semantique Pour Les Arbres Non Deterministes , 1981, CAAP.

[14]  Stephen L. Bloom,et al.  All Solutions of a System of Recursion Equations in Infinite Trees and Other Contraction Theories , 1983, J. Comput. Syst. Sci..

[15]  C. C. Elgot Monadic Computation And Iterative Algebraic Theories , 1982 .

[16]  Matthew Hennessy,et al.  Acceptance trees , 1985, JACM.

[17]  Jean H. Gallier,et al.  Recursion-Closed Algebraic Theories , 1981, J. Comput. Syst. Sci..

[18]  Maurice Nivat,et al.  The metric space of infinite trees. Algebraic and topological properties , 1980, Fundam. Informaticae.

[19]  Jean Gallier DPDA's in 'Atomic Normal Form' and Applications to Equivalence Problems , 1981, Theor. Comput. Sci..

[20]  Joseph A. Goguen,et al.  Initial Algebra Semantics and Continuous Algebras , 1977, J. ACM.

[21]  George Gratzer,et al.  Universal Algebra , 1979 .

[22]  STEPHrN L. BLOOM,et al.  Varieties of Ordered Algebras , 1976, J. Comput. Syst. Sci..

[23]  Daniel J. Lehmann,et al.  On the Algebra of Order , 1980, J. Comput. Syst. Sci..

[24]  Horst Herrlich,et al.  Category theory , 1979 .

[25]  Irène Guessarian,et al.  Algebraic semantics , 1981, Lecture Notes in Computer Science.

[26]  Gordon D. Plotkin,et al.  A Powerdomain Construction , 1976, SIAM J. Comput..

[27]  Jean H. Gallier Corrigendum: DPDA's in "Atomic Normal Form" and Applications to Equivalence Problems. TCS 14(1981) 155-186 , 1982, Theor. Comput. Sci..

[28]  Jerzy Tiuryn,et al.  Fixed-Points and Algebras with Infinitely Long Expressions, I , 1977, MFCS.

[29]  David B. Benson Parameter Passing in Nondeterministic Recursive Programs , 1979, J. Comput. Syst. Sci..

[30]  M. Arbib,et al.  Arrows, Structures, and Functors: The Categorical Imperative , 1975 .

[31]  Irène Guessarian On Continuous Completions , 1979, Theoretical Computer Science.

[32]  Jean H. Gallier n-Rational Algebras I. Basic Properties and Free Algebras , 1984, SIAM J. Comput..

[33]  Bernhard Banaschewski,et al.  Completions of Partially Ordered Sets , 1982, SIAM J. Comput..

[34]  Francesco Parisi-Presicce,et al.  Iterative vs. regular factor algebras , 1983, SIGA.

[35]  Robin Milner,et al.  Algebraic laws for nondeterminism and concurrency , 1985, JACM.

[36]  Michael A. Arbib,et al.  Algebraic Approaches to Program Semantics , 1986, Texts and Monographs in Computer Science.

[37]  William C. Rounds,et al.  On the Relationship between Scott Domains, Synchronization Trees, and Metric Spaces , 1985, Inf. Control..

[38]  Maurice Nivat,et al.  Langages algébriques sur le magma libre et sémantique des schémas de programme , 1972, ICALP.

[39]  Bruno Courcelle,et al.  on recursive equations having a unique solution , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[40]  Joseph A. Goguen,et al.  Some Fundamentals of Order-Algebraic Semantics , 1976, MFCS.

[41]  B. Courcelle Fundamental properties of infinite trees , 1983 .

[42]  Bruno Courcelle,et al.  Algebraic families of interpretations , 1976, 17th Annual Symposium on Foundations of Computer Science (sfcs 1976).

[43]  Matthew Hennessy,et al.  Full Abstraction for a Simple Parallel Programming Language , 1979, MFCS.

[44]  Jan A. Bergstra,et al.  Algebra of Communicating Processes with Abstraction , 1985, Theor. Comput. Sci..

[45]  Bruno Courcelle,et al.  Completions of ordered magmas , 1980, Fundam. Informaticae.

[46]  Stephen L. Bloom,et al.  The Existence and Construction of Free Iterative Theories , 1976, J. Comput. Syst. Sci..

[47]  Jerzy Tiuryn Unique Fixed Points Vs. Least Fixed Points , 1980, Theor. Comput. Sci..

[48]  Susanna Ginali,et al.  Regular Trees and the Free Iterative Theory , 1979, J. Comput. Syst. Sci..