Analog and Hybrid Computation: Dynamical Systems and Programming Languages

The purpose of this article is to serve as a light-weight introduction into the mysteries of analog and hybrid computing models from a dynamical systems and programming languages perspective. Hybrid systems are the dynamical systems that combine both models of computation, i.e., have interacting discrete and continuous dynamics. They have found widespread application as models for embedded computing in embedded systems as well as in cyber-physical systems. The primary role hybrid systems have played so far is to allow us to model how a (discrete) computer controller interacts with the (continuous) physical world and to analyze by means of formal proofs or reachability analyzes whether this interaction is safe or not. Without any doubt, such analyzes are of tremendous importance for our society, because they determine whether we can bet our lives on those systems. But this article argues that hybrid systems also have computational consequences that make them an interesting subject to study from a computability theory perspective. Hybrid systems are described by hybrid programs or hybrid automata, both hybrid generalizations of corresponding discrete computational models. The phenomenon of discrete and continuous interplay, which hybrid systems provide, is fundamental and raises interesting computability questions. For example: what is computable using the analogue computation capabilities of continuous dynamical systems? How do the discrete computation capabilities of discrete dynamical systems relate to classical models of computation a la Church–Turing? What happens in hybrid computation, where discrete and continuous computation interact? Are the two facets of computation, discrete and continuous, of fundamentally different character or are they two sides of the same computational coin? This article answers some of these questions using the rich theory that a logical characterization of hybrid systems in differential dynamic logic of hybrid programs provides. But the article is meant primarily as a manifesto for the significance and inherent beauty that these questions possess in the first place.

[1]  B. Øksendal Stochastic differential equations : an introduction with applications , 1987 .

[2]  R. Sanfelice,et al.  Hybrid dynamical systems , 2009, IEEE Control Systems.

[3]  André Platzer,et al.  Invariance of Conjunctions of Polynomial Equalities for Algebraic Differential Equations , 2014, SAS.

[4]  André Platzer,et al.  Differential Dynamic Logic for Verifying Parametric Hybrid Systems , 2007, TABLEAUX.

[5]  George J. Pappas,et al.  Discrete abstractions of hybrid systems , 2000, Proceedings of the IEEE.

[6]  William C. Rounds,et al.  A Spatial Logic for the Hybrid p-Calculus , 2004, HSCC.

[7]  André Platzer,et al.  A Temporal Dynamic Logic for Verifying Hybrid System Invariants , 2007, LFCS.

[8]  Frank S. de Boer,et al.  Verification of Sequential and Concurrent Programs , 1997, Texts and Monographs in Computer Science.

[9]  J. Lygeros,et al.  A game theoretic approach to controller design for hybrid systems , 2000, Proceedings of the IEEE.

[10]  Rudolf Carnap Modalities and Quantification , 1946, J. Symb. Log..

[11]  Otomar Hájek,et al.  Discontinuous differential equations, II , 1979 .

[12]  André Platzer,et al.  The Complete Proof Theory of Hybrid Systems , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.

[13]  André Platzer,et al.  Playing Hybrid Games with KeYmaera , 2012, IJCAR.

[14]  Vannevar Bush,et al.  The differential analyzer. A new machine for solving differential equations , 1931 .

[15]  Lauretta O. Osho,et al.  Axiomatic Basis for Computer Programming , 2013 .

[16]  Michael S. Branicky,et al.  General Hybrid Dynamical Systems: Modeling, Analysis, and Control , 1996, Hybrid Systems.

[17]  S. Sastry,et al.  Towars a Theory of Stochastic Hybrid Systems , 2000, HSCC.

[18]  Zohar Manna,et al.  From Timed to Hybrid Systems , 1991, REX Workshop.

[19]  André Platzer,et al.  Differential-algebraic Dynamic Logic for Differential-algebraic Programs , 2010, J. Log. Comput..

[20]  Goran Frehse,et al.  PHAVer: algorithmic verification of hybrid systems past HyTech , 2005, International Journal on Software Tools for Technology Transfer.

[21]  André Platzer,et al.  Characterizing Algebraic Invariants by Differential Radical Invariants , 2014, TACAS.

[22]  Cristopher Moore,et al.  Recursion Theory on the Reals and Continuous-Time Computation , 1996, Theor. Comput. Sci..

[23]  Mythily Ramaswamy,et al.  Zero-Sum Differential Games Involving Hybrid Controls , 2006 .

[24]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[25]  René David,et al.  On Hybrid Petri Nets , 2001, Discret. Event Dyn. Syst..

[26]  Daniel S. Graça,et al.  Effective Computability of Solutions of Differential Inclusions The Ten Thousand Monkeys Approach , 2009, J. Univers. Comput. Sci..

[27]  Michael S. Branicky,et al.  Universal Computation and Other Capabilities of Hybrid and Continuous Dynamical Systems , 1995, Theor. Comput. Sci..

[28]  Thomas A. Henzinger,et al.  Rectangular Hybrid Games , 1999, CONCUR.

[29]  André Platzer,et al.  Logical Analysis of Hybrid Systems - Proving Theorems for Complex Dynamics , 2010 .

[30]  Xin Chen,et al.  Flow*: An Analyzer for Non-linear Hybrid Systems , 2013, CAV.

[31]  Ka Lok Man,et al.  Syntax and consistent equation semantics of hybrid Chi , 2006, J. Log. Algebraic Methods Program..

[32]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[33]  T. Faniran Numerical Solution of Stochastic Differential Equations , 2015 .

[34]  Patricia Bouyer,et al.  O-Minimal Hybrid Reachability Games , 2009, Log. Methods Comput. Sci..

[35]  Bernhard Beckert,et al.  Dynamic Logic , 2007, The KeY Approach.

[36]  Claude E. Shannon,et al.  Mathematical Theory of the Differential Analyzer , 1941 .

[37]  L. Tavernini Differential automata and their discrete simulators , 1987 .

[38]  Taylor T. Johnson,et al.  A Small Model Theorem for Rectangular Hybrid Automata Networks , 2012, FMOODS/FORTE.

[39]  Mark H. A. Davis Piecewise‐Deterministic Markov Processes: A General Class of Non‐Diffusion Stochastic Models , 1984 .

[40]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[41]  Anil Nerode,et al.  Models for Hybrid Systems: Automata, Topologies, Controllability, Observability , 1992, Hybrid Systems.

[42]  Edmund M. Clarke,et al.  The Image Computation Problem in Hybrid Systems Model Checking , 2007, HSCC.

[43]  J. Aubin,et al.  Differential inclusions set-valued maps and viability theory , 1984 .

[44]  C. Cassandras,et al.  Stochastic hybrid systems , 2006 .

[45]  V. Borkar,et al.  A unified framework for hybrid control: model and optimal control theory , 1998, IEEE Trans. Autom. Control..

[46]  Nancy A. Lynch,et al.  Dynamic input/output automata, a formal model for dynamic systems , 2001, PODC '01.

[47]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[48]  André Platzer,et al.  A Complete Axiomatization of Quantified Differential Dynamic Logic for Distributed Hybrid Systems , 2012, Log. Methods Comput. Sci..

[49]  Boris A. Trakhtenbrot,et al.  Automata, circuits and hybrids: facets of continuous time , 2001, STOC '01.

[50]  Olivier Bournez,et al.  Polynomial differential equations compute all real computable functions on computable compact intervals , 2007, J. Complex..

[51]  Günter Hotz,et al.  Analytic Machines , 1999, Theor. Comput. Sci..

[52]  Anil Nerode,et al.  Hybrid System Games: Extraction of Control Automata with Small Topologies , 1996, Hybrid Systems.

[53]  M. K. Ghosh,et al.  Ergodic Control of Switching Diffusions , 1997 .

[54]  Dexter Kozen,et al.  Kleene algebra with tests , 1997, TOPL.

[55]  Jan Joris Vereijken A Process Algebra for Hybrid Systems , 1999 .

[56]  André Platzer,et al.  Dynamic Logics of Dynamical Systems , 2012, ArXiv.

[57]  L. Perko Differential Equations and Dynamical Systems , 1991 .

[58]  Alexandre M. Bayen,et al.  VERIFICATION OF HYBRID SYSTEMS , 2004 .

[59]  Leo F. Boron,et al.  Introduction to topological dynamics , 1975 .

[60]  John Lygeros,et al.  Toward a General Theory of Stochastic Hybrid Systems , 2006 .

[61]  Seif Haridi,et al.  Distributed Algorithms , 1992, Lecture Notes in Computer Science.

[62]  Nancy A. Lynch,et al.  Self-stabilizing robot formations over unreliable networks , 2009, TAAS.

[63]  Christel Baier,et al.  Principles of model checking , 2008 .

[64]  André Platzer,et al.  Logics of Dynamical Systems , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.

[65]  André Platzer,et al.  The Structure of Differential Invariants and Differential Cut Elimination , 2011, Log. Methods Comput. Sci..

[66]  Mahesh Viswanathan,et al.  Specifications for decidable hybrid games , 2011, Theor. Comput. Sci..

[67]  Max J. Cresswell,et al.  A New Introduction to Modal Logic , 1998 .

[68]  Ken Thompson,et al.  Programming Techniques: Regular expression search algorithm , 1968, Commun. ACM.

[69]  Michael S. Branicky,et al.  Studies in hybrid systems: modeling, analysis, and control , 1996 .

[70]  Robert W. Floyd,et al.  Assigning Meanings to Programs , 1993 .

[71]  Stefan Ratschan,et al.  Safety verification of hybrid systems by constraint propagation-based abstraction refinement , 2007, TECS.

[72]  Edmund M. Clarke,et al.  Computing differential invariants of hybrid systems as fixedpoints , 2008, Formal Methods Syst. Des..

[73]  Thomas A. Henzinger,et al.  Hybrid Automata: An Algorithmic Approach to the Specification and Verification of Hybrid Systems , 1992, Hybrid Systems.

[74]  Vaughan R. Pratt,et al.  SEMANTICAL CONSIDERATIONS ON FLOYD-HOARE LOGIC , 1976, FOCS 1976.

[75]  Antoine Girard,et al.  SpaceEx: Scalable Verification of Hybrid Systems , 2011, CAV.

[76]  Joseph Sifakis,et al.  An Approach to the Description and Analysis of Hybrid Systems , 1992, Hybrid Systems.

[77]  Stephan Merz,et al.  Model Checking , 2000 .

[78]  Oded Galor,et al.  Discrete Dynamical Systems , 2005 .

[79]  André Platzer,et al.  A Differential Operator Approach to Equational Differential Invariants - (Invited Paper) , 2012, ITP.

[80]  André Platzer,et al.  KeYmaera: A Hybrid Theorem Prover for Hybrid Systems (System Description) , 2008, IJCAR.

[81]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[82]  Marian Boykan Pour-El,et al.  Computability in analysis and physics , 1989, Perspectives in Mathematical Logic.

[83]  Yde Venema,et al.  Dynamic Logic by David Harel, Dexter Kozen and Jerzy Tiuryn. The MIT Press, Cambridge, Massachusetts. Hardback: ISBN 0–262–08289–6, $50, xv + 459 pages , 2002, Theory and Practice of Logic Programming.

[84]  Robert L. Grossman,et al.  Timed Automata , 1999, CAV.

[85]  John Lygeros,et al.  Towars a Theory of Stochastic Hybrid Systems , 2000, HSCC.

[86]  André Platzer,et al.  Differential Dynamic Logic for Hybrid Systems , 2008, Journal of Automated Reasoning.

[87]  André Platzer,et al.  Adaptive Cruise Control: Hybrid, Distributed, and Now Formally Verified , 2011, FM.

[88]  André Platzer,et al.  European Train Control System: A Case Study in Formal Verification , 2009, ICFEM.

[89]  Kim G. Larsen,et al.  The Impressive Power of Stopwatches , 2000, CONCUR.

[90]  José Meseguer,et al.  Specification and Analysis of Distributed Object-Based Stochastic Hybrid Systems , 2006, HSCC.

[91]  Anil Nerode Logic and Control , 2007, CiE.

[92]  Daniel S. Graça,et al.  Computability with polynomial differential equations , 2008, Adv. Appl. Math..

[93]  Dana S. Scott,et al.  Finite Automata and Their Decision Problems , 1959, IBM J. Res. Dev..

[94]  K. S. Sibirsky Introduction to Topological Dynamics , 2011 .

[95]  André Platzer,et al.  Quantified Differential Dynamic Logic for Distributed Hybrid Systems , 2010, CSL.

[96]  Nancy A. Lynch,et al.  Dynamic Input/Output Automata: A Formal Model for Dynamic Systems , 2001, CONCUR.

[97]  André Platzer,et al.  Stochastic Differential Dynamic Logic for Stochastic Hybrid Programs , 2011, CADE.

[98]  Rod Cross,et al.  The coefficient of restitution for collisions of happy balls, unhappy balls, and tennis balls , 2000 .

[99]  Alexander Moshe Rabinovich,et al.  Automata over continuous time , 2003, Theor. Comput. Sci..

[100]  Edmund M. Clarke,et al.  Formal Verification of Curved Flight Collision Avoidance Maneuvers: A Case Study , 2009, FM.

[101]  Thomas A. Henzinger,et al.  The theory of hybrid automata , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[102]  The physical Church–Turing thesis and non-deterministic computation over the real numbers , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[103]  André Platzer,et al.  Logical Analysis of Hybrid Systems - A Complete Answer to a Complexity Challenge , 2012, DCFS.

[104]  P. Hartman Ordinary Differential Equations , 1965 .

[105]  Xenofon D. Koutsoukos,et al.  Computational Methods for Verification of Stochastic Hybrid Systems , 2008, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[106]  Pravin Varaiya,et al.  SHIFT: A Formalism and a Programming Language for Dynamic Networks of Hybrid Automata , 1996, Hybrid Systems.

[107]  Edmund M. Clarke,et al.  Computing Differential Invariants of Hybrid Systems as Fixedpoints , 2008, CAV.

[108]  Martin Fränzle,et al.  Engineering constraint solvers for automatic analysis of probabilistic hybrid automata , 2010, J. Log. Algebraic Methods Program..

[109]  André Platzer,et al.  On Provably Safe Obstacle Avoidance for Autonomous Robotic Ground Vehicles , 2013, Robotics: Science and Systems.

[110]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[111]  José Félix Costa,et al.  Analog computers and recursive functions over the reals , 2003, J. Complex..

[112]  P. Nistri,et al.  On Discontinuous Differential Equations , 2009 .

[113]  Joao P. Hespanha,et al.  Hybrid systems : computation and control : 9th International Workshop, HSCC 2006, Santa Barbara, CA, USA, March 29-31, 2006 : proceedings , 2006 .

[114]  Thomas A. Henzinger,et al.  HYTECH: the next generation , 1995, Proceedings 16th IEEE Real-Time Systems Symposium.

[115]  Moore,et al.  Unpredictability and undecidability in dynamical systems. , 1990, Physical review letters.

[116]  Thomas A. Henzinger,et al.  The Algorithmic Analysis of Hybrid Systems , 1995, Theor. Comput. Sci..

[117]  Insup Lee,et al.  R-Charon, a Modeling Language for Reconfigurable Hybrid Systems , 2006, HSCC.

[118]  A. Nerode,et al.  Logics for hybrid systems , 2000, Proceedings of the IEEE.

[119]  Bell Telephone,et al.  Regular Expression Search Algorithm , 1968 .

[120]  S. Shankar Sastry,et al.  Conflict resolution for air traffic management: a study in multiagent hybrid systems , 1998, IEEE Trans. Autom. Control..

[121]  André Platzer Differential Dynamic Logic: Automated Theorem Proving for Hybrid Systems , 2008, Ausgezeichnete Informatikdissertationen.

[122]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[123]  André Platzer,et al.  Differential Game Logic , 2014, ACM Trans. Comput. Log..

[124]  A. Platzer,et al.  A Complete Axiomatization of Differential Game Logic for Hybrid Games (CMU-CS-13-100R) , 2013 .

[125]  Klaus Weihrauch,et al.  Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.

[126]  Stephen A. Cook,et al.  Complexity Theory for Operators in Analysis , 2012, TOCT.

[127]  M. Hirsch,et al.  Differential Equations, Dynamical Systems, and an Introduction to Chaos , 2003 .