A Spatial Extension to the pi Calculus

Spatial dynamics receive increasing attention in Systems Biology and require suitable modeling and simulation approaches. So far, modeling formalisms have focused on population-based approaches or place and move individuals relative to each other in space. SpacePi extends the @p calculus by time and space. @p processes are embedded into a vector space and move individually. Only processes that are sufficiently close can communicate. The operational semantics of SpacePi defines the interplay between movement, communication, and time-triggered events. A model describing the phototaxis of the Euglena micro-organism is presented as a practical example. The formalism's use and generality is discussed with respect to the modeling of molecular biological processes like diffusion, active transportation in cell signaling, and spatial structures.

[1]  Yoshinao Isobe,et al.  Approximative Analysis by Process Algebra with Graded Spatial Actions , 1996, AMAST.

[2]  Jan A. Bergstra,et al.  Real time process algebra , 1991, Formal Aspects of Computing.

[3]  Nicolas Le Novère,et al.  Particle-Based Stochastic Simulation in Systems Biology , 2006 .

[4]  Masaru Tomita,et al.  Space in systems biology of signaling pathways – towards intracellular molecular crowding in silico , 2005, FEBS letters.

[5]  Robin Milner,et al.  Communicating and mobile systems - the Pi-calculus , 1999 .

[6]  Bernard P. Zeigler,et al.  Theory of modeling and simulation , 1976 .

[7]  Luca Cardelli,et al.  A Correct Abstract Machine for the Stochastic Pi-calculus , 2004 .

[8]  J. Edwards,et al.  Computational modeling reveals molecular details of epidermal growth factor binding , 2005, BMC Cell Biology.

[9]  Alan Bundy,et al.  Constructing Induction Rules for Deductive Synthesis Proofs , 2006, CLASE.

[10]  Erik De Schutter,et al.  Computational neuroscience : realistic modeling for experimentalists , 2000 .

[11]  D. A. Baxter,et al.  Modeling Circadian Oscillations with Interlocking Positive and Negative Feedback Loops , 2001, The Journal of Neuroscience.

[12]  Corrado Priami,et al.  Beta Binders for Biological Interactions , 2004, CMSB.

[13]  Jan A. Bergstra,et al.  Real space process algebra , 2005, Formal Aspects of Computing.

[14]  Jason M Haugh,et al.  A unified model for signal transduction reactions in cellular membranes. , 2002, Biophysical journal.

[15]  Yingxu Wang,et al.  The Real-Time Process Algebra (RTPA) , 2002, Ann. Softw. Eng..

[16]  Joseph Sifakis,et al.  An Overview and Synthesis on Timed Process Algebras , 1991, CAV.

[17]  D. Bray,et al.  Stochastic simulation of chemical reactions with spatial resolution and single molecule detail , 2004, Physical biology.

[18]  Corrado Priami,et al.  Stochastic pi-Calculus , 1995, Comput. J..

[19]  Luca Cardelli,et al.  BioAmbients: an abstraction for biological compartments , 2004, Theor. Comput. Sci..

[20]  Richard Banach Review: Process Algebra with Timing , 2004, J. Log. Comput..

[21]  Stephen Gilmore,et al.  Modelling the Influence of RKIP on the ERK Signalling Pathway Using the Stochastic Process Algebra PEPA , 2006, Trans. Comp. Sys. Biology.

[22]  Hans Vangheluwe,et al.  Kiltera: A Simulation Language for Timed, Dynamic Structure Systems , 2007, 40th Annual Simulation Symposium (ANSS'07).

[23]  Th. W. Engelmann,et al.  Ueber Licht- und Farbenperception niederster Organismen , 1882, Archiv für die gesamte Physiologie des Menschen und der Tiere.

[24]  T. Bartol,et al.  Monte Carlo Methods for Simulating Realistic Synaptic Microphysiology Using MCell , 2000 .

[25]  J. H. Schwartz,et al.  Axonal transport: components, mechanisms, and specificity. , 1979, Annual review of neuroscience.

[26]  Corrado Priami,et al.  Discrete event systems specification in systems biology - a discussion of stochastic pi calculus and DEVS , 2005, Proceedings of the Winter Simulation Conference, 2005..

[27]  B. Kholodenko Cell-signalling dynamics in time and space , 2006, Nature Reviews Molecular Cell Biology.

[28]  S. Plimpton,et al.  Microbial cell modeling via reacting diffusive particles , 2005 .

[29]  Corrado Priami,et al.  Process Calculi in a Biological Context , 2005, Bull. EATCS.

[30]  Aviv Regev,et al.  The π-calculus as an Abstraction for Biomolecular Systems , 2004 .