FAT1 mutations cause a glomerulotubular nephropathy

[1]  Margaret Y. Nettleton,et al.  KANK deficiency leads to podocyte dysfunction and nephrotic syndrome. , 2015, The Journal of clinical investigation.

[2]  S. Engelmann,et al.  A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. , 2015, Journal of the American Society of Nephrology : JASN.

[3]  M. Selig,et al.  Collective Epithelial Migration Drives Kidney Repair after Acute Injury , 2014, PloS one.

[4]  S. Levy,et al.  Mutations in EMP2 cause childhood-onset nephrotic syndrome. , 2014, American journal of human genetics.

[5]  A. Adeyemo,et al.  Mutations in the gene that encodes the F-actin binding protein anillin cause FSGS. , 2014, Journal of the American Society of Nephrology : JASN.

[6]  R. Thorne,et al.  Sleeping Giants: Emerging Roles for the Fat Cadherins in Health and Disease , 2014, Medicinal research reviews.

[7]  A. Paterson,et al.  ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption. , 2013, The Journal of clinical investigation.

[8]  S. Levy,et al.  Whole exome resequencing distinguishes cystic kidney diseases from phenocopies in renal ciliopathies , 2013, Kidney international.

[9]  K. Reidy,et al.  Excess podocyte semaphorin-3A leads to glomerular disease involving plexinA1-nephrin interaction. , 2013, The American journal of pathology.

[10]  F. Wilson,et al.  Cdc42 deficiency causes ciliary abnormalities and cystic kidneys. , 2013, Journal of the American Society of Nephrology : JASN.

[11]  Q. Shu,et al.  Myo1e Impairment Results in Actin Reorganization, Podocyte Dysfunction, and Proteinuria in Zebrafish and Cultured Podocytes , 2013, PloS one.

[12]  S. Levy,et al.  ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling. , 2013, The Journal of clinical investigation.

[13]  F. Hildebrandt,et al.  Identification of 99 novel mutations in a worldwide cohort of 1,056 patients with a nephronophthisis-related ciliopathy , 2013, Human Genetics.

[14]  T. Pawson,et al.  Yap- and Cdc42-Dependent Nephrogenesis and Morphogenesis during Mouse Kidney Development , 2013, PLoS genetics.

[15]  L. Liau,et al.  Recurrent somatic mutation of FAT1 in multiple human cancers leads to aberrant Wnt activation , 2013, Nature Genetics.

[16]  Corinne Stoetzel,et al.  Exome Capture Reveals ZNF423 and CEP164 Mutations, Linking Renal Ciliopathies to DNA Damage Response Signaling , 2012, Cell.

[17]  T. Pawson,et al.  Podocyte-specific loss of Cdc42 leads to congenital nephropathy. , 2012, Journal of the American Society of Nephrology : JASN.

[18]  Y. Anikster,et al.  Integrin α3 mutations with kidney, lung, and skin disease. , 2012, The New England journal of medicine.

[19]  Jai Radhakrishnan,et al.  Mutations in Kelch-like 3 and Cullin 3 cause hypertension and electrolyte abnormalities , 2012, Nature.

[20]  G. Mollet,et al.  INF2 mutations in Charcot-Marie-Tooth disease with glomerulopathy. , 2011, The New England journal of medicine.

[21]  C. Antignac,et al.  Arhgap24 inactivates Rac1 in mouse podocytes, and a mutant form is associated with familial focal segmental glomerulosclerosis. , 2011, The Journal of clinical investigation.

[22]  K. Nakashiro,et al.  Human FAT1 cadherin controls cell migration and invasion of oral squamous cell carcinoma through the localization of β-catenin. , 2011, Oncology reports.

[23]  G. Remuzzi,et al.  MYO1E mutations and childhood familial focal segmental glomerulosclerosis. , 2011, The New England journal of medicine.

[24]  V. Pertegato,et al.  COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. , 2011, The Journal of clinical investigation.

[25]  Min Goo Lee,et al.  Syntaxin 16 Binds to Cystic Fibrosis Transmembrane Conductance Regulator and Regulates Its Membrane Trafficking in Epithelial Cells* , 2010, The Journal of Biological Chemistry.

[26]  S. Levy,et al.  Candidate exome capture identifies mutation of SDCCAG8 as the cause of a retinal-renal ciliopathy , 2010, Nature Genetics.

[27]  H. Higgs,et al.  Mutations in the formin protein INF2 cause focal segmental glomerulosclerosis , 2009, Nature Genetics.

[28]  P. Yaswen,et al.  A Versatile Viral System for Expression and Depletion of Proteins in Mammalian Cells , 2009, PloS one.

[29]  C. Englert,et al.  Scribble participates in Hippo signaling and is required for normal zebrafish pronephros development , 2009, Proceedings of the National Academy of Sciences.

[30]  F. Hildebrandt,et al.  Specific podocin mutations determine age of onset of nephrotic syndrome all the way into adult life. , 2009, Kidney international.

[31]  Peter Nürnberg,et al.  A Systematic Approach to Mapping Recessive Disease Genes in Individuals from Outbred Populations , 2009, PLoS genetics.

[32]  J. Miyoshi,et al.  Modification of mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease , 2008, Nature Medicine.

[33]  Manfred Gessler,et al.  Loss of Fat4 disrupts PCP signaling and oriented cell division and leads to cystic kidney disease , 2008, Nature Genetics.

[34]  E. Bertini,et al.  COQ2 nephropathy: a newly described inherited mitochondriopathy with primary renal involvement. , 2007, Journal of the American Society of Nephrology : JASN.

[35]  K. Asanuma,et al.  Actin up: regulation of podocyte structure and function by components of the actin cytoskeleton. , 2007, Trends in cell biology.

[36]  C. Englert,et al.  The Wilms tumor genes wt1a and wt1b control different steps during formation of the zebrafish pronephros. , 2007, Developmental biology.

[37]  D. Stablein,et al.  Contributions of the Transplant Registry: The 2006 Annual Report of the North American Pediatric Renal Trials and Collaborative Studies (NAPRTCS) * , 2007, Pediatric transplantation.

[38]  C. Brenner,et al.  p53 Activation by Knockdown Technologies , 2007, PLoS genetics.

[39]  A. Munnich,et al.  Prenyldiphosphate synthase, subunit 1 (PDSS1) and OH-benzoate polyprenyltransferase (COQ2) mutations in ubiquinone deficiency and oxidative phosphorylation disorders. , 2007, The Journal of clinical investigation.

[40]  Peter Nürnberg,et al.  Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible , 2006, Nature Genetics.

[41]  I. Hariharan,et al.  Regulation of imaginal disc growth by tumor-suppressor genes in Drosophila. , 2006, Annual review of genetics.

[42]  Bethan E. Hoskins,et al.  Recessive missense mutations in LAMB2 expand the clinical spectrum of LAMB2-associated disorders. , 2006, Kidney international.

[43]  Jaakko Patrakka,et al.  Hereditary proteinuria syndromes and mechanisms of proteinuria. , 2006, The New England journal of medicine.

[44]  D. Clapham,et al.  TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function , 2005, Nature Genetics.

[45]  M. Pericak-Vance,et al.  A Mutation in the TRPC6 Cation Channel Causes Familial Focal Segmental Glomerulosclerosis , 2005, Science.

[46]  T. Aigner,et al.  Human laminin beta2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. , 2004, Human molecular genetics.

[47]  L. Holzman,et al.  Protocadherin FAT1 binds Ena/VASP proteins and is necessary for actin dynamics and cell polarization , 2004, The EMBO journal.

[48]  A. Bakkaloğlu,et al.  Patients with mutations in NPHS2 (podocin) do not respond to standard steroid treatment of nephrotic syndrome. , 2004, Journal of the American Society of Nephrology : JASN.

[49]  C. ffrench-Constant,et al.  Mice Lacking the Giant Protocadherin mFAT1 Exhibit Renal Slit Junction Abnormalities and a Partially Penetrant Cyclopia and Anophthalmia Phenotype , 2003, Molecular and Cellular Biology.

[50]  L. Holzman,et al.  Podocyte‐specific expression of cre recombinase in transgenic mice , 2003, Genesis.

[51]  M. O'hare,et al.  A conditionally immortalized human podocyte cell line demonstrating nephrin and podocin expression. , 2002, Journal of the American Society of Nephrology : JASN.

[52]  Nicolas Produit,et al.  Parametric and nonparametric multipoint linkage analysis with imprinting and two-locus-trait models: application to mite sensitization. , 2000, American journal of human genetics.

[53]  Daniel F. Gudbjartsson,et al.  Allegro, a new computer program for multipoint linkage analysis , 2000, Nature genetics.

[54]  Corinne Antignac,et al.  NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome , 2000, Nature Genetics.

[55]  S. Somlo,et al.  Getting a foothold in nephrotic syndrome , 2000, Nature Genetics.

[56]  J. Kaplan,et al.  Mutations in ACTN4, encoding α-actinin-4, cause familial focal segmental glomerulosclerosis , 2000, Nature Genetics.

[57]  Michael Loran Dustin,et al.  Congenital nephrotic syndrome in mice lacking CD2-associated protein. , 1999, Science.

[58]  L Peltonen,et al.  Positionally cloned gene for a novel glomerular protein--nephrin--is mutated in congenital nephrotic syndrome. , 1998, Molecular cell.

[59]  L Kruglyak,et al.  Parametric and nonparametric linkage analysis: a unified multipoint approach. , 1996, American journal of human genetics.

[60]  西川 由希子 Human FAT1 cadherin controls cell migration and invasion of oral squamous cell carcinoma through the localization of β-catenin , 2011 .

[61]  R. Hennekam,et al.  Mutations in the human laminin β2 (LAMB2) gene and the associated phenotypic spectrum a , 2010 .

[62]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[63]  Emily H Turner,et al.  Targeted Capture and Massively Parallel Sequencing of Twelve Human Exomes , 2009, Nature.

[64]  C. Antignac Molecular basis of steroid-resistant nephrotic syndrome. , 2005, Nefrologia : publicacion oficial de la Sociedad Espanola Nefrologia.

[65]  J. Kaplan,et al.  Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis. , 2000, Nature genetics.

[66]  M. Gubler,et al.  WT1 and PAX-2 podocyte expression in Denys-Drash syndrome and isolated diffuse mesangial sclerosis. , 1999, The American journal of pathology.

[67]  Primary nephrotic syndrome in children: clinical significance of histopathologic variants of minimal change and of diffuse mesangial hypercellularity. A Report of the International Study of Kidney Disease in Children. , 1981, Kidney international.