Sequential scute growth layers reveal developmental histories of hawksbill sea turtles

[1]  J. A. Seminoff,et al.  Tracking movements and growth of post-hatchling to adult hawksbill sea turtles using skeleto+iso , 2022, Frontiers in Ecology and Evolution.

[2]  E. Flaherty,et al.  Diet and foraging niche flexibility in green and hawksbill turtles , 2022, Marine Biology.

[3]  T. Peterson,et al.  Fishers' Ecological Knowledge and Stable Isotope Analysis Reveal Mangrove Estuaries as Key Developmental Habitats for Critically Endangered Sea Turtles , 2021, Frontiers in Conservation Science.

[4]  Devin L. Johnson,et al.  Hawksbill Nesting in Hawai‘i: 30-Year Dataset Reveals Recent Positive Trend for a Small, Yet Vital Population , 2021, Frontiers in Marine Science.

[5]  V. Lesage,et al.  Stable Isotope Analysis of Specimens of Opportunity Reveals Ocean-Scale Site Fidelity in an Elusive Whale Species , 2021, Frontiers in Conservation Science.

[6]  Stacy K. Hargrove,et al.  Hawaiian hawksbills: a distinct and isolated nesting colony in the Central North Pacific Ocean revealed by mitochondrial DNA , 2020, Conservation Genetics.

[7]  Celiam . Smith,et al.  Herbaria macroalgae as a proxy for historical upwelling trends in Central California , 2020, Proceedings of the Royal Society B.

[8]  D. Chacón-Chaverri,et al.  Trophic ecology of hawksbill turtles (Eretmochelys imbricata) in Golfo Dulce, Costa Rica: integrating esophageal lavage and stable isotope (δ13C, δ15N) analysis , 2020 .

[9]  Kyle S. Van Houtan,et al.  The historical development of complex global trafficking networks for marine wildlife , 2019, Science Advances.

[10]  Karl Auerswald,et al.  Tracking animal migration with stable isotopes , 2019, Isotopes in Environmental and Health Studies.

[11]  N. Marbà,et al.  Stable Isotope (δ13C, δ15N, δ18O, δD) Composition and Nutrient Concentration of Red Sea Primary Producers , 2018, Front. Mar. Sci..

[12]  Brian C. Stock,et al.  Analyzing mixing systems using a new generation of Bayesian tracer mixing models , 2018, PeerJ.

[13]  K. Hyrenbach,et al.  Trophic signatures of seabirds suggest shifts in oceanic ecosystems , 2018, Science Advances.

[14]  S. Pimm,et al.  Seabird Trophic Position Across Three Ocean Regions Tracks Ecosystem Differences , 2018, Front. Mar. Sci..

[15]  C. M. Kurle,et al.  Intrapopulation variability in the timing of ontogenetic habitat shifts in sea turtles revealed using &dgr;15N values from bone growth rings , 2017, The Journal of animal ecology.

[16]  A. Olsen,et al.  A global estimate of the full oceanic 13C Suess effect since the preindustrial , 2017 .

[17]  Brian C Stock,et al.  Unifying error structures in commonly used biotracer mixing models. , 2016, Ecology.

[18]  R. W. Baird,et al.  The developmental biogeography of hawksbill sea turtles in the North Pacific , 2016, Ecology and evolution.

[19]  Kyle S. Van Houtan,et al.  Time in tortoiseshell: a bomb radiocarbon-validated chronology in sea turtle scutes , 2016, Proceedings of the Royal Society B: Biological Sciences.

[20]  Kyle S. Van Houtan,et al.  A Review of the Demographic Features of Hawaiian Green Turtles (Chelonia mydas) , 2015 .

[21]  S. Heppell,et al.  Patterns of loggerhead turtle ontogenetic shifts revealed through isotopic analysis of annual skeletal growth increments , 2015 .

[22]  J. A. Seminoff,et al.  Effects of demineralization on the stable isotope analysis of bone samples. , 2015, Rapid communications in mass spectrometry : RCM.

[23]  T. Peterson,et al.  One size does not fit all: Importance of adjusting conservation practices for endangered hawksbill turtles to address local nesting habitat needs in the eastern Pacific Ocean , 2015 .

[24]  Stacy K. Hargrove,et al.  Modeling Sea Turtle Maturity Age from Partial Life History Records , 2014 .

[25]  Celiam . Smith,et al.  Eutrophication and the dietary promotion of sea turtle tumors , 2014, PeerJ.

[26]  J. A. Seminoff,et al.  Foraging site fidelity and stable isotope values of loggerhead turtles tracked in the Gulf of Mexico and northwest Caribbean , 2014 .

[27]  K. Bjorndal,et al.  Complementary skeletochronology and stable isotope analyses offer new insight into juvenile loggerhead sea turtle oceanic stage duration and growth dynamics , 2013 .

[28]  M. Lesser,et al.  Nitrogen Biogeochemistry in the Caribbean Sponge, Xestospongia muta: A Source or Sink of Dissolved Inorganic Nitrogen? , 2013, PloS one.

[29]  K. Bjorndal,et al.  Temporal consistency and individual specialization in resource use by green turtles in successive life stages , 2013, Oecologia.

[30]  K. Bjorndal,et al.  Temporal consistency and individual specialization in resource use by green turtles in successive life stages , 2013, Oecologia.

[31]  J. Raga,et al.  Migratory patterns in hawksbill turtles described by satellite tracking , 2012 .

[32]  K. Bjorndal,et al.  Inherent Variation in Stable Isotope Values and Discrimination Factors in Two Life Stages of Green Turtles , 2012, Physiological and Biochemical Zoology.

[33]  C. Trueman,et al.  Identifying migrations in marine fishes through stable-isotope analysis. , 2012, Journal of fish biology.

[34]  Scott R. Benson,et al.  Stable Isotope Tracking of Endangered Sea Turtles: Validation with Satellite Telemetry and δ15N Analysis of Amino Acids , 2012, PloS one.

[35]  M. López-Mendilaharsu,et al.  Satellite tracking of hawksbill turtles Eretmochelys imbricata nesting in northern Bahia, Brazil: turtle movements and foraging destinations , 2012 .

[36]  W. J. Nichols,et al.  Shifting the life-history paradigm: discovery of novel habitat use by hawksbill turtles , 2012, Biology Letters.

[37]  S. Eckert,et al.  Tracking hawksbill sea turtles (Eretmochelys imbricata) during inter-nesting intervals around Barbados , 2012 .

[38]  P. Dutton,et al.  Trophic ecology of green sea turtles in a highly urbanized bay: Insights from stable isotopes and mixing models , 2011 .

[39]  Matthew H. Godfrey,et al.  Regional Management Units for Marine Turtles: A Novel Framework for Prioritizing Conservation and Research across Multiple Scales , 2010, PloS one.

[40]  J. Ragle,et al.  IUCN Red List of Threatened Species , 2010 .

[41]  Stacy K. Hargrove,et al.  Land Use, Macroalgae, and a Tumor-Forming Disease in Marine Turtles , 2010, PloS one.

[42]  Celiam . Smith,et al.  Using delta 15N values in algal tissue to map locations and potential sources of anthropogenic nutrient inputs on the island of Maui, Hawai'i, USA. , 2010, Marine pollution bulletin.

[43]  E. Naro‐Maciel,et al.  Population structure and conservation implications for the loggerhead sea turtle of the Cape Verde Islands , 2010, Conservation Genetics.

[44]  A. Aguilar,et al.  Delayed ontogenic dietary shift and high levels of omnivory in green turtles (Chelonia mydas) from the NW coast of Africa , 2009 .

[45]  K. Bjorndal,et al.  The ‘lost years’ of green turtles: using stable isotopes to study cryptic lifestages , 2007, Biology Letters.

[46]  Edgard O. Espinoza,et al.  THE ANALYSIS OF SEA TURTLE AND BOVID KERATIN ARTEFACTS USING DRIFT SPECTROSCOPY AND DISCRIMINANT ANALYSIS , 2007 .

[47]  C. Eakin,et al.  A review of modern coral δ18O and Δ14C proxy records , 2007 .

[48]  D. R. Jones,et al.  Stable isotope discrimination (δ13C and δ15N) between soft tissues of the green sea turtle Chelonia mydas and its diet , 2006 .

[49]  G. Balazs,et al.  Retrospective pathology survey of green turtles Chelonia mydas with fibropapillomatosis in the Hawaiian Islands, 1993--2003. , 2004, Diseases of aquatic organisms.

[50]  I. Nagelkerken,et al.  Ontogenetic dietary changes of coral reef fishes in the mangrove-seagrass-reef continuum: stable isotopes and gut-content analysis , 2003 .

[51]  B. Kromer,et al.  A stable-isotope tree-ring timescale of the Late Glacial/Holocene boundary , 1991, Nature.

[52]  F. Schweingruber Tree Rings: Basics and Applications of Dendrochronology , 1988 .

[53]  M. J. Deniro,et al.  Influence of Diet On the Distribtion of Nitrogen Isotopes in Animals , 1978 .

[54]  G. Pannella Fish Otoliths: Daily Growth Layers and Periodical Patterns , 1971, Science.

[55]  L. Rettger,et al.  Influence of diet on the distribution of bacteria in the stomach, small intestine and cecum of the white rat. , 1940 .

[56]  A. Fireman ON THE SHELL OF THE TURTLE: IDENTIFYING THE ISOTOPIC NICHE OF HAWKSBILL SEA TURTLES IN ANTIGUA, WEST INDIES , 2021 .

[57]  Y. Swimmer,et al.  Three decades of stranding data reveal insights into endangered hawksbill sea turtles in Hawaiʻi , 2021, Endangered Species Research.

[58]  S. Heppell,et al.  Regional differences in Kemp’s ridley sea turtle growth trajectories and expected age at maturation , 2020 .

[59]  P. Dutton,et al.  Status review of the green turtle (Chelonia mydas) under the Engangered Species Act , 2015 .

[60]  W. Seitz,et al.  Twenty years of conservation and research findings of the Hawai‘i Island Hawksbill Turtle Recovery Project, 1989 - 2009 , 2012 .

[61]  K. Bjorndal,et al.  Hawksbill sea turtles in seagrass pastures: success in a peripheral habitat , 2010 .

[62]  S. C. Graham Analysis of the foraging ecology of hawksbill turtles (Eretmochelys imbricata) on Hawai'i Island: An investigation utilizing satellite tracking and stable isotopes , 2009 .

[63]  S. Kakade,et al.  Locally Weighted Regression , 2009 .

[64]  Pushpa Palaniappan The Carapacial Scutes of hawksbill turtles (Eretmochelys imbricata): development, growth dynamics and utility as an age indicator , 2007 .

[65]  R. Siegwolf,et al.  Stable isotopes as indicators of ecological change , 2007 .

[66]  W. Cleveland,et al.  Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting , 1988 .

[67]  D. Broderick,et al.  Age estimation of Eretmochelys imbricata by sclerochronology of carapacial scutes , 2001 .

[68]  E. Caine Carapace epibionts of nesting loggerhead sea turtles: Atlantic coast of U.S.A.☆ , 1986 .