On inf-sup stabilized finite element methods for transient problems

We consider the behavior of inf–sup stabilization in the context of transient problems with multiple time scales. Our motivation for studying this setting is provided by reacting flows problems for which small time steps are necessary in the integration process. We show that for algorithms defined through a process wherein spatial and temporal discretizations are separated, the coupling of implicit time integration with spatial inf–sup stabilization may lead to anomalous pressure behavior, including the onset of spurious oscillations, for very small time steps. Effectively, this coupling introduces a stability criterion resulting in a dependence between the spatial grid size and the time step. We illustrate our theoretical results by numerical examples that demonstrate the stability criterion. � 2004 Elsevier B.V. All rights reserved.

[1]  Tayfun E. Tezduyar,et al.  Finite element stabilization parameters computed from element matrices and vectors , 2000 .

[2]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[3]  Claes Johnson,et al.  Finite element methods for linear hyperbolic problems , 1984 .

[4]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[5]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[6]  L. Franca,et al.  Stabilized finite element methods. II: The incompressible Navier-Stokes equations , 1992 .

[7]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .

[8]  Isaac Harari,et al.  Stability of semidiscrete formulations for parabolic problems at small time steps , 2004 .

[9]  T. Hughes,et al.  A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions: application to the streamline-upwind procedure. , 1982 .

[10]  Pavel B. Bochev,et al.  A Taxonomy of Consistently Stabilized Finite Element Methods for the Stokes Problem , 2004, SIAM J. Sci. Comput..

[11]  Richard H. Gallagher,et al.  Finite elements in fluids , 1975 .

[12]  C. Farhat,et al.  Bubble Functions Prompt Unusual Stabilized Finite Element Methods , 1994 .

[13]  L. Franca,et al.  The Galerkin gradient least-squares method , 1989 .

[14]  The anti-dissipative, non-monotone behavior of Petrov-Galerkin upwinding , 2000 .

[15]  Marek Behr,et al.  Stabilized finite element methods for the velocity-pressure-stress formulation of incompressible flows , 1993 .

[16]  F. Shakib Finite element analysis of the compressible Euler and Navier-Stokes equations , 1989 .

[17]  L. Franca,et al.  On an Improved Unusual Stabilized Finite Element Method for theAdvective-Reactive-Diffusive Equation , 1999 .

[18]  L. Franca,et al.  Stabilized Finite Element Methods , 1993 .

[19]  Jim Douglas,et al.  An absolutely stabilized finite element method for the stokes problem , 1989 .

[20]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics. X - The compressible Euler and Navier-Stokes equations , 1991 .

[21]  Marek Behr,et al.  Stabilized finite element methods for incompressible flows with emphasis on moving boundaries and interfaces , 1992 .

[22]  T. Hughes,et al.  Stabilized finite element methods. I: Application to the advective-diffusive model , 1992 .

[23]  Ramon Codina,et al.  Space and Time Error Estimates for a First Order, Pressure Stabilized Finite Element Method for the Incompressible Navier–Stokes Equations , 2001 .

[24]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[25]  Jean-Francois Hetu,et al.  Galerkin gradient least-squares formulations for transient conduction heat transfer , 2002 .

[26]  J. Douglas,et al.  Stabilized mixed methods for the Stokes problem , 1988 .

[27]  Pavel B. Bochev,et al.  ON STABILIZED FINITE ELEMENT METHODS FOR TRANSIENT PROBLEMS WITH VARYING TIME SCALES , 2004 .

[28]  Ramon Codina,et al.  Stabilized finite element method for the transient Navier–Stokes equations based on a pressure gradient projection , 2000 .

[29]  Thomas J. R. Hughes,et al.  A new finite element formulation for computational fluid dynamics: IX. Fourier analysis of space-time Galerkin/least-squares algorithms , 1991 .

[30]  Thomas J. R. Hughes,et al.  The Stokes problem with various well-posed boundary conditions - Symmetric formulations that converge for all velocity/pressure spaces , 1987 .

[31]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .