Using Semivariogram Parameter Uncertainty in Hydrogeological Applications

Geostatistical estimation (kriging) and geostatistical simulation are routinely used in ground water hydrology for optimal spatial interpolation and Monte Carlo risk assessment, respectively. Both techniques are based on a model of spatial variability (semivariogram or covariance) that generally is not known but must be inferred from the experimental data. Where the number of experimental data is small (say, several tens), as is not unusual in ground water hydrology, the model fitted to the empirical semivariogram entails considerable uncertainty. If all the practical results are based on this unique fitted model, the final results will be biased. We propose that, instead of using a unique semivariogram model, the full range of models that are inside a given confidence region should be used, and the weight that each semivariogram model has on the final result should depend on its plausibility. The first task, then, is to evaluate the uncertainty of the model, which can be efficiently done by using maximum likelihood inference. The second task is to use the range of plausible models in applications and to show the effect observed on the final results. This procedure is put forth here with kriging and simulation applications, where the uncertainty in semivariogram parameters is propagated into the final results (e.g., the prediction of ground water head). A case study using log-transmissivity data from the Vega de Granada aquifer, in southern Spain, is given to illustrate the methodology.

[1]  K. Mardia,et al.  Maximum likelihood estimation of models for residual covariance in spatial regression , 1984 .

[2]  Clayton V. Deutsch,et al.  Calculation of Uncertainty in the Variogram , 2002 .

[3]  Eulogio Pardo-Igúzquiza,et al.  Maximum Likelihood Estimation of Spatial Covariance Parameters , 1998 .

[4]  R. M. Lark,et al.  Estimating Variogram Uncertainty , 2004 .

[5]  Eulogio Pardo-Igúzquiza,et al.  VARIOG2D: a computer program for estimating the semi-variogram and its uncertainty , 2001 .

[6]  Eulogio Pardo-Igúzquiza,et al.  MLREML: a computer program for the inference of spatial covariance parameters by maximum likelihood and restricted maximum liklihood , 1997 .

[7]  Eulogio Pardo-Igúzquiza,et al.  Variance–Covariance Matrix of the Experimental Variogram: Assessing Variogram Uncertainty , 2001 .

[8]  Eulogio Pardo-Igúzquiza,et al.  Empirical Maximum Likelihood Kriging: The General Case , 2005 .

[9]  Minggao Gu,et al.  Maximum likelihood estimation for spatial models , 2001 .

[10]  G. Marsily Quantitative Hydrogeology: Groundwater Hydrology for Engineers , 1986 .

[11]  L. Gelhar Stochastic Subsurface Hydrology , 1992 .

[12]  P. Dowd,et al.  ASSESSMENT OF THE UNCERTAINTY OF SPATIAL COVARIANCE PARAMETERS OF SOIL PROPERTIES AND ITS USE IN APPLICATIONS , 2003 .

[13]  Peter K. Kitanidis,et al.  Statistical estimation of polynomial generalized covariance functions and hydrologic applications , 1983 .

[14]  Eulogio Pardo-Igúzquiza,et al.  EMLK2D: a computer program for spatial estimation using empirical maximum likelihood kriging , 2005, Comput. Geosci..

[15]  S. R. Searle Linear Models , 1971 .

[16]  J. A. Luque Espinar Análisis geoestadístico espacio-temporal de la variabilidad piezométrica. Aplicación a la Vega de Granada , 2001 .

[17]  P. J. Green,et al.  Probability and Statistical Inference , 1978 .

[18]  P. McCullagh,et al.  Generalized Linear Models, 2nd Edn. , 1990 .

[19]  E. Pardo‐Igúzquiza Inference of spatial indicator convariance parameters by maximum likelihood using MLREML , 1998 .