Monochromatic and Zero-Sum Sets of Nondecreasing Modified Diameter

Let $m$ be a positive integer whose smallest prime divisor is denoted by $p$, and let ${\Bbb Z}_m$ denote the cyclic group of residues modulo $m$. For a set $B=\{x_1,x_2,\ldots,x_m\}$ of $m$ integers satisfying $x_1

[1]  Yair Caro,et al.  Zero-sum problems - A survey , 1996, Discret. Math..

[2]  H. L. Abbott,et al.  On A Combinatorial Problem of Erdös , 1969, Canadian Mathematical Bulletin.

[3]  Luis H. Gallardo,et al.  On a variant of the Erdős-Ginzburg-Ziv problem , 1999 .

[4]  Roger Crocker,et al.  A theorem in additive number theory , 1969 .

[5]  Yahya Ould Hamidoune Subsequence Sums , 2003, Comb. Probab. Comput..

[6]  Béla Bollobás,et al.  The Number of k-Sums Modulo k , 1999 .

[7]  S. S. Pillai On the addition of residue classes , 1938 .

[8]  D. Kleitman,et al.  On a combinatorial problem of Erdős , 1966 .

[9]  Arie Bialostocki,et al.  On zero sum Ramsey numbers: Multiple copies of a graph , 1994, J. Graph Theory.

[10]  David J. Grynkiewicz,et al.  On some developments of the Erdős–Ginzburg–Ziv Theorem II , 2003 .

[11]  John E. Olson On a combinatorial problem of Erds, Ginzburg, and Ziv , 1976 .

[12]  Oscar Ordaz,et al.  On the Erdös-Ginzburg-Ziv theorem , 1996, Discret. Math..

[13]  Weidong Gao,et al.  Zero Sums in Abelian Groups , 1998, Comb. Probab. Comput..

[14]  Melvyn B. Nathanson,et al.  Additive Number Theory , 1996 .

[15]  Weidong Gao Addition Theorems for Finite Abelian Groups , 1995 .

[16]  John E. Olson An addition theorem for finite Abelian groups , 1977 .

[17]  A. Ziv,et al.  Theorem in the Additive Number Theory , 2022 .

[18]  David J. Grynkiewicz An extension of the Erdos-Ginzburg-Ziv Theorem to hypergraphs , 2005, Eur. J. Comb..

[19]  Alain Plagne,et al.  Restricted addition in Z/nZ and an Application to the Erdős–Ginzburg–Ziv Problem , 2002 .

[20]  David J. Grynkiewicz,et al.  On Four Colored Sets with Nondecreasing Diameter and the Erds-Ginzburg-Ziv Theorem , 2002, J. Comb. Theory, Ser. A.

[21]  Paul Erdös,et al.  Monochromatic and zero-sum sets of nondecreasing diameter , 1995, Discret. Math..

[22]  Noga Alon,et al.  Zero-sum sets of prescribed size , 1993 .

[23]  Arie Bialostocki,et al.  Zero Sum Trees: A Survey of Results and Open Problems , 1993 .

[24]  Arie Bialostocki,et al.  On the Erdös-Ginzburg-Ziv theorem and the Ramsey numbers for stars and matchings , 1992, Discret. Math..

[25]  Werner Brakemeier Eine Anzahlformel von Zahlen modulon , 1978 .

[26]  Oscar Ordaz,et al.  On a Combinatorial Theorem of Erdös, Ginzburg and Ziv , 1998, Comb. Probab. Comput..

[27]  David J. Grynkiewicz,et al.  On a partition analog of the Cauchy-Davenport theorem , 2005 .

[28]  David J. Grynkiewicz On a Conjecture of Hamidoune for Subsequence Sums , 2005 .

[29]  Henry B. Mann Two addition theorems , 1967 .

[30]  Paul D. Seymour,et al.  A simpler proof and a generalization of the zero-trees theorem , 1991, J. Comb. Theory, Ser. A.

[31]  M. Kneser,et al.  Ein Satz über abelsche Gruppen mit Anwendungen auf die Geometrie der Zahlen , 1954 .

[32]  Zoltán Füredi,et al.  On zero-trees , 1992, J. Graph Theory.

[33]  Daniel Schaal,et al.  A zero-sum theorem , 2003, J. Comb. Theory, Ser. A.

[34]  N. S. Barnett,et al.  Private communication , 1969 .