A Delta-Regularization Finite Element Method for a Double Curl Problem with Divergence-Free Constraint

To deal with the divergence-free constraint in a double curl problem, ${\rm curl\,} \mu^{-1} {\rm curl\,} u=f$ and ${\rm div\,} \varepsilon u=0$ in $\Omega$, where $\mu$ and $\varepsilon$ represent the physical properties of the materials occupying $\Omega$, we develop a $\delta$-regularization method, ${\rm curl\,} \mu^{-1} {\rm curl\,} u_\delta +\delta \varepsilon u_\delta=f$, to completely ignore the divergence-free constraint ${\rm div\,} \varepsilon u=0$. We show that $u_\delta$ converges to $u$ in $H({\rm curl\,};\Omega)$ norm as $\delta\rightarrow 0$. The edge finite element method is then analyzed for solving $u_\delta$. With the finite element solution $u_{\delta,h}$, a quasioptimal error bound in the $H({\rm curl\,};\Omega)$ norm is obtained between $u$ and $u_{\delta,h}$, including a uniform (with respect to $\delta$) stability of $u_{\delta,h}$ in the $H({\rm curl\,};\Omega)$ norm. All the theoretical analysis is done in a general setting, where $\mu$ and $\varepsilon$ may be discontinuous, an...

[1]  Daniele Boffi,et al.  Fortin operator and discrete compactness for edge elements , 2000, Numerische Mathematik.

[2]  Feng Jia,et al.  The Local L2 Projected C0 Finite Element Method for Maxwell Problem , 2009, SIAM J. Numer. Anal..

[3]  M. Costabel A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains , 1990 .

[4]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[5]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[6]  V. Girault,et al.  A Local Regularization Operator for Triangular and Quadrilateral Finite Elements , 1998 .

[7]  Ilaria Perugia,et al.  Vector potential formulation for Magnetostatics and modeling of permanent magnets , 1999 .

[8]  M. Costabel,et al.  Singularities of Electromagnetic Fields¶in Polyhedral Domains , 2000 .

[9]  Ilaria Perugia,et al.  The hp-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations , 2003, Math. Comput..

[10]  A. Bossavit Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements , 1997 .

[11]  Christophe Hazard,et al.  A Singular Field Method for the Solution of Maxwell's Equations in Polyhedral Domains , 1999, SIAM J. Appl. Math..

[12]  Shangyou Zhang Quadratic divergence-free finite elements on Powell–Sabin tetrahedral grids , 2011 .

[13]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[14]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[15]  Roger C. E. Tan,et al.  Analysis of a continuous finite element method for $$H(\mathrm{curl},\mathrm{div})$$-elliptic interface problem , 2013, Numerische Mathematik.

[16]  Joseph E. Pasciak,et al.  A new approximation technique for div-curl systems , 2003, Math. Comput..

[17]  Joachim Schöberl,et al.  An algebraic multigrid method for finite element discretizations with edge elements , 2002, Numer. Linear Algebra Appl..

[18]  Leszek Demkowicz,et al.  Finite Element Methods for Maxwell Equations , 2007 .

[19]  V. Girault,et al.  Vector potentials in three-dimensional non-smooth domains , 1998 .

[20]  Ilaria Perugia,et al.  Interior penalty method for the indefinite time-harmonic Maxwell equations , 2005, Numerische Mathematik.

[21]  D. Arnold,et al.  Finite element exterior calculus: From hodge theory to numerical stability , 2009, 0906.4325.

[22]  Jun Zou,et al.  Fully discrete finite element approaches for time-dependent Maxwell's equations , 1999, Numerische Mathematik.

[23]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[24]  Annalisa Buffa,et al.  Solving electromagnetic eigenvalue problems in polyhedral domains with nodal finite elements , 2009, Numerische Mathematik.

[25]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[26]  Snorre H. Christiansen,et al.  Smoothed projections in finite element exterior calculus , 2007, Math. Comput..

[27]  Serge Nicaise,et al.  Edge Elements on Anisotropic Meshes and Approximation of the Maxwell Equations , 2001, SIAM J. Numer. Anal..

[28]  R. Hiptmair Finite elements in computational electromagnetism , 2002, Acta Numerica.

[29]  Joachim Schöberl,et al.  A posteriori error estimates for Maxwell equations , 2007, Math. Comput..

[30]  Christophe Hazard,et al.  On the solution of time-harmonic scattering problems for Maxwell's equations , 1996 .

[31]  Ralf Hiptmair,et al.  Convergence analysis of finite element methods for H(curl; Ω)-elliptic interface problems , 2012, Numerische Mathematik.

[32]  Gianni Gilardi,et al.  Magnetostatic and Electrostatic Problems in Inhomogeneous Anisotropic Media with Irregular Boundary and Mixed Boundary Conditions , 1997 .

[33]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[34]  Thomas A. Manteuffel,et al.  FOSLL∗ Method for the Eddy Current Problem with Three-Dimensional Edge Singularities , 2007, SIAM J. Numer. Anal..

[35]  B. Jiang The Least-Squares Finite Element Method , 1998 .

[36]  Jun Zou,et al.  Uniform a priori estimates for elliptic and static Maxwell interface problems , 2006 .

[37]  M. Dauge,et al.  Uniform estimates for transmission problems with high contrast in heat conduction and electromagnetism , 2009, 0910.1018.

[38]  Zhiming Chen,et al.  Finite Element Methods with Matching and Nonmatching Meshes for Maxwell Equations with Discontinuous Coefficients , 2000, SIAM J. Numer. Anal..

[39]  Susanne C. Brenner,et al.  A nonconforming finite element method for a two-dimensional curl–curl and grad-div problem , 2008, Numerische Mathematik.

[40]  Ilaria Perugia,et al.  Mixed discontinuous Galerkin approximation of the Maxwell operator: The indefinite case , 2005 .

[41]  Ohannes A. Karakashian,et al.  A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..

[42]  Martin Costabel,et al.  Weighted regularization of Maxwell equations in polyhedral domains , 2002, Numerische Mathematik.

[43]  G. Burton Sobolev Spaces , 2013 .

[44]  Alberto Valli,et al.  An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations , 1999, Math. Comput..

[45]  M. Costabel,et al.  Singularities of Maxwell interface problems , 1999 .

[46]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[47]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[48]  M. Birman,et al.  L2-Theory of the Maxwell operator in arbitrary domains , 1987 .

[49]  Douglas N. Arnold,et al.  Multigrid in H (div) and H (curl) , 2000, Numerische Mathematik.

[50]  Jinchao Xu,et al.  Nodal Auxiliary Space Preconditioning in H(curl) and H(div) Spaces , 2007, SIAM J. Numer. Anal..

[51]  Gene H. Golub,et al.  Matrix computations , 1983 .

[52]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[53]  Susanne C. Brenner,et al.  Korn's inequalities for piecewise H1 vector fields , 2003, Math. Comput..

[54]  Long Chen FINITE ELEMENT METHODS FOR MAXWELL EQUATIONS , 2010 .

[55]  Weifeng Qiu,et al.  Partial expansion of a Lipschitz domain and some applications , 2011, Frontiers of Mathematics in China.

[56]  Carretera de Valencia,et al.  The finite element method in electromagnetics , 2000 .