Triangular norms. Position paper I: basic analytical and algebraic properties

We present the basic analytical and algebraic properties of triangular norms. We discuss continuity as well as the important classes of Archimedean, strict and nilpotent t-norms. Triangular conorms and De Morgan triples are also mentioned. Finally, a brief historical survey on triangular norms is given.

[1]  H. J. Skala,et al.  Aspects of vagueness , 1984 .

[2]  Didier Dubois,et al.  Fuzzy sets and systems ' . Theory and applications , 2007 .

[3]  J. Aczél,et al.  Sur les opérations définies pour nombres réels , 1948 .

[4]  Sándor Jenei,et al.  Structure of left-continuous triangular norms with strong induced negations (II) Rotation-annihilation construction , 2001, J. Appl. Non Class. Logics.

[5]  M. Sugeno,et al.  Fuzzy Measures and Integrals: Theory and Applications , 2000 .

[6]  E. Pap Null-Additive Set Functions , 1995 .

[7]  V. Novák,et al.  Discovering the world with fuzzy logic , 2000 .

[8]  B. Roy,et al.  The use of fuzzy outranking relations in preference modelling , 1992 .

[9]  M. K. Luhandjula Compensatory operators in fuzzy linear programming with multiple objectives , 1982 .

[10]  Christian Eitzinger,et al.  Triangular Norms , 2001, Künstliche Intell..

[11]  K. Menger Statistical Metrics. , 1942, Proceedings of the National Academy of Sciences of the United States of America.

[12]  S. E. Rodabaugh,et al.  Topological and Algebraic Structures in Fuzzy Sets , 2003 .

[13]  R. Nelsen An Introduction to Copulas , 1998 .

[14]  M. S. Tomás,et al.  A characterization of a class of aggregation functions , 1993 .

[15]  E. Trillas Sobre funciones de negación en la teoría de conjuntos difusos. , 1979 .

[16]  Hung T. Nguyen,et al.  Theoretical aspects of fuzzy control , 1995 .

[17]  M. J. Frank On the simultaneous associativity of F(x, y) and x+y-F(x, y). (Short Communication). , 1978 .

[18]  J. M Anthony,et al.  Fuzzy groups redefined , 1979 .

[19]  H. Zimmermann,et al.  Latent connectives in human decision making , 1980 .

[20]  S. Gottwald,et al.  Untersuchungen zur Mehrwertigen Mengenlehre. I , 1976 .

[21]  Michel Grabisch,et al.  Fuzzy Measures and Integrals , 1995 .

[22]  R. J. Koch,et al.  The theory of topological semigroups , 1986 .

[23]  Helmut Thiele,et al.  On T-quantifiers and S-quantifiers , 1994, Proceedings of 24th International Symposium on Multiple-Valued Logic (ISMVL'94).

[24]  Karl H. Hofmann,et al.  Semigroup theory and its applications , 1996 .

[25]  S. Weber ⊥-Decomposable measures and integrals for Archimedean t-conorms ⊥ , 1984 .

[26]  Hung T. Nguyen,et al.  A First Course in Fuzzy Logic , 1996 .

[27]  M. J. Frank On the simultaneous associativity ofF(x,y) andx +y -F(x,y) , 1979 .

[28]  Radko Mesiar,et al.  On the Relationship of Associative Compensatory operators to triangular Norms and Conorms , 1996, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[29]  Karl H. Hofmann,et al.  Linearly ordered semigroups: Historical origins and A.H. Clifford's influence , 1995 .

[30]  Ronald R. Yager,et al.  Essentials of fuzzy modeling and control , 1994 .

[31]  Hung T. Nguyen,et al.  Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference , 1994 .

[32]  Richard Bellman,et al.  On the Analytic Formalism of the Theory of Fuzzy Sets , 1973, Inf. Sci..

[33]  E. Cartan,et al.  La théorie des groupes finis et continus et l'Analysis situs , 1952 .

[34]  N. H. Abel Untersuchung der Functionen zweier unabhängig veränderlichen Größen x und y, wie f(x, y), welche die Eigenschaft haben, daß f(z, f (x,y)) eine symmetrische Function von z, x und y ist. , 1826 .

[35]  Fritz Klein-Barmen,et al.  Über gewisse Halbverbände und kommutative Semigruppen , 1942 .

[36]  J. Fodor Contrapositive symmetry of fuzzy implications , 1995 .

[37]  B. Schweizer,et al.  Statistical metric spaces. , 1960 .

[38]  Rudolf Kruse,et al.  Fuzzy-systems in computer science , 1994 .

[39]  Francesc Esteva,et al.  Review of Triangular norms by E. P. Klement, R. Mesiar and E. Pap. Kluwer Academic Publishers , 2003 .

[40]  J. Aczél,et al.  Lectures on Functional Equations and Their Applications , 1968 .

[41]  Paul C. Rhodes,et al.  Essentials of Fuzzy Modelling and Control , 1995 .

[42]  A. H. Clifford,et al.  Naturally Totally Ordered Commutative Semigroups , 1954 .

[43]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[44]  Siegfried Weber,et al.  Generalized measures , 1991 .

[45]  Milos S. Kurilic,et al.  A family of strict and discontinuous triangular norms , 1998, Fuzzy Sets Syst..

[46]  Marc Roubens,et al.  Fuzzy Preference Modelling and Multicriteria Decision Support , 1994, Theory and Decision Library.

[47]  J. Dombi Basic concepts for a theory of evaluation: The aggregative operator , 1982 .

[48]  J. Aczél Vorlesungen über Funktionalgleichungen und ihre Anwendungen , 1960 .

[49]  L. E. J. Brouwer,et al.  Die Theorie der endlichen kontinuierlichen Gruppen, unabhängig von den Axiomen von Lie , 1909 .

[50]  Patrice Perny Modélisation, agrégation et exploitation de préférences floues dans une problématique du rangement : bases axiomatiques, procédures et logiciels , 1992 .

[51]  Lotfi A. Zadeh,et al.  Fuzzy sets and systems , 1990 .

[52]  P. Mostert,et al.  On the Structure of Semigroups on a Compact Manifold With Boundary , 1957 .

[53]  菅野 道夫,et al.  Theory of fuzzy integrals and its applications , 1975 .

[54]  Siegfried Gottwald,et al.  Applications of fuzzy sets to systems analysis , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[55]  R. Moufang Aczél, J.: Vorlesungen über Funktionalgleichungen und ihre Anwendungen. VEB Deutscher Verlag der Wissenschaften. Berlin 1961. 331 S., geb. DM 37,50 , 1963 .

[56]  S. E. Rodabaugh,et al.  Topological and algebraic structures in fuzzy sets : a handbook of recent developments in the mathematics of fuzzy sets , 2003 .

[57]  Sándor Jenei,et al.  Structure of left-continuous triangular norms with strong induced negations (I) Rotation construction , 2000, J. Appl. Non Class. Logics.

[58]  M. Tokizawa,et al.  On Topological Semigroups , 1982 .

[59]  Ulrich Höhle,et al.  Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory , 1998 .

[60]  W. M. Faucett Compact semigroups irreducibly connected between two idempotents , 1955 .

[61]  Ronald R. Yager,et al.  Uninorm aggregation operators , 1996, Fuzzy Sets Syst..

[62]  I. Turksen Interval-valued fuzzy sets and “compensatory AND” , 1992 .

[63]  Didier Dubois,et al.  Fuzzy Sets, Logics, and Reasoning About Knowledge , 1999 .

[64]  Biegfried Gottwald Untersuchungen zur Mehrwertigen Mengenlehre. II: Untersuchungen zur Mehrwertigen Mengenlehre , 1976 .

[65]  S. Jenei Structure Of Girard Monoids On [0,1] , 2003 .

[66]  D. Butnariu,et al.  Triangular Norm-Based Measures and Games with Fuzzy Coalitions , 1993 .