Triangular norms. Position paper I: basic analytical and algebraic properties
暂无分享,去创建一个
[1] H. J. Skala,et al. Aspects of vagueness , 1984 .
[2] Didier Dubois,et al. Fuzzy sets and systems ' . Theory and applications , 2007 .
[3] J. Aczél,et al. Sur les opérations définies pour nombres réels , 1948 .
[4] Sándor Jenei,et al. Structure of left-continuous triangular norms with strong induced negations (II) Rotation-annihilation construction , 2001, J. Appl. Non Class. Logics.
[5] M. Sugeno,et al. Fuzzy Measures and Integrals: Theory and Applications , 2000 .
[6] E. Pap. Null-Additive Set Functions , 1995 .
[7] V. Novák,et al. Discovering the world with fuzzy logic , 2000 .
[8] B. Roy,et al. The use of fuzzy outranking relations in preference modelling , 1992 .
[9] M. K. Luhandjula. Compensatory operators in fuzzy linear programming with multiple objectives , 1982 .
[10] Christian Eitzinger,et al. Triangular Norms , 2001, Künstliche Intell..
[11] K. Menger. Statistical Metrics. , 1942, Proceedings of the National Academy of Sciences of the United States of America.
[12] S. E. Rodabaugh,et al. Topological and Algebraic Structures in Fuzzy Sets , 2003 .
[13] R. Nelsen. An Introduction to Copulas , 1998 .
[14] M. S. Tomás,et al. A characterization of a class of aggregation functions , 1993 .
[15] E. Trillas. Sobre funciones de negación en la teoría de conjuntos difusos. , 1979 .
[16] Hung T. Nguyen,et al. Theoretical aspects of fuzzy control , 1995 .
[17] M. J. Frank. On the simultaneous associativity of F(x, y) and x+y-F(x, y). (Short Communication). , 1978 .
[18] J. M Anthony,et al. Fuzzy groups redefined , 1979 .
[19] H. Zimmermann,et al. Latent connectives in human decision making , 1980 .
[20] S. Gottwald,et al. Untersuchungen zur Mehrwertigen Mengenlehre. I , 1976 .
[21] Michel Grabisch,et al. Fuzzy Measures and Integrals , 1995 .
[22] R. J. Koch,et al. The theory of topological semigroups , 1986 .
[23] Helmut Thiele,et al. On T-quantifiers and S-quantifiers , 1994, Proceedings of 24th International Symposium on Multiple-Valued Logic (ISMVL'94).
[24] Karl H. Hofmann,et al. Semigroup theory and its applications , 1996 .
[25] S. Weber. ⊥-Decomposable measures and integrals for Archimedean t-conorms ⊥ , 1984 .
[26] Hung T. Nguyen,et al. A First Course in Fuzzy Logic , 1996 .
[27] M. J. Frank. On the simultaneous associativity ofF(x,y) andx +y -F(x,y) , 1979 .
[28] Radko Mesiar,et al. On the Relationship of Associative Compensatory operators to triangular Norms and Conorms , 1996, Int. J. Uncertain. Fuzziness Knowl. Based Syst..
[29] Karl H. Hofmann,et al. Linearly ordered semigroups: Historical origins and A.H. Clifford's influence , 1995 .
[30] Ronald R. Yager,et al. Essentials of fuzzy modeling and control , 1994 .
[31] Hung T. Nguyen,et al. Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference , 1994 .
[32] Richard Bellman,et al. On the Analytic Formalism of the Theory of Fuzzy Sets , 1973, Inf. Sci..
[33] E. Cartan,et al. La théorie des groupes finis et continus et l'Analysis situs , 1952 .
[34] N. H. Abel. Untersuchung der Functionen zweier unabhängig veränderlichen Größen x und y, wie f(x, y), welche die Eigenschaft haben, daß f(z, f (x,y)) eine symmetrische Function von z, x und y ist. , 1826 .
[35] Fritz Klein-Barmen,et al. Über gewisse Halbverbände und kommutative Semigruppen , 1942 .
[36] J. Fodor. Contrapositive symmetry of fuzzy implications , 1995 .
[37] B. Schweizer,et al. Statistical metric spaces. , 1960 .
[38] Rudolf Kruse,et al. Fuzzy-systems in computer science , 1994 .
[39] Francesc Esteva,et al. Review of Triangular norms by E. P. Klement, R. Mesiar and E. Pap. Kluwer Academic Publishers , 2003 .
[40] J. Aczél,et al. Lectures on Functional Equations and Their Applications , 1968 .
[41] Paul C. Rhodes,et al. Essentials of Fuzzy Modelling and Control , 1995 .
[42] A. H. Clifford,et al. Naturally Totally Ordered Commutative Semigroups , 1954 .
[43] Petr Hájek,et al. Metamathematics of Fuzzy Logic , 1998, Trends in Logic.
[44] Siegfried Weber,et al. Generalized measures , 1991 .
[45] Milos S. Kurilic,et al. A family of strict and discontinuous triangular norms , 1998, Fuzzy Sets Syst..
[46] Marc Roubens,et al. Fuzzy Preference Modelling and Multicriteria Decision Support , 1994, Theory and Decision Library.
[47] J. Dombi. Basic concepts for a theory of evaluation: The aggregative operator , 1982 .
[48] J. Aczél. Vorlesungen über Funktionalgleichungen und ihre Anwendungen , 1960 .
[49] L. E. J. Brouwer,et al. Die Theorie der endlichen kontinuierlichen Gruppen, unabhängig von den Axiomen von Lie , 1909 .
[50] Patrice Perny. Modélisation, agrégation et exploitation de préférences floues dans une problématique du rangement : bases axiomatiques, procédures et logiciels , 1992 .
[51] Lotfi A. Zadeh,et al. Fuzzy sets and systems , 1990 .
[52] P. Mostert,et al. On the Structure of Semigroups on a Compact Manifold With Boundary , 1957 .
[53] 菅野 道夫,et al. Theory of fuzzy integrals and its applications , 1975 .
[54] Siegfried Gottwald,et al. Applications of fuzzy sets to systems analysis , 1977, IEEE Transactions on Systems, Man, and Cybernetics.
[55] R. Moufang. Aczél, J.: Vorlesungen über Funktionalgleichungen und ihre Anwendungen. VEB Deutscher Verlag der Wissenschaften. Berlin 1961. 331 S., geb. DM 37,50 , 1963 .
[56] S. E. Rodabaugh,et al. Topological and algebraic structures in fuzzy sets : a handbook of recent developments in the mathematics of fuzzy sets , 2003 .
[57] Sándor Jenei,et al. Structure of left-continuous triangular norms with strong induced negations (I) Rotation construction , 2000, J. Appl. Non Class. Logics.
[58] M. Tokizawa,et al. On Topological Semigroups , 1982 .
[59] Ulrich Höhle,et al. Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory , 1998 .
[60] W. M. Faucett. Compact semigroups irreducibly connected between two idempotents , 1955 .
[61] Ronald R. Yager,et al. Uninorm aggregation operators , 1996, Fuzzy Sets Syst..
[62] I. Turksen. Interval-valued fuzzy sets and “compensatory AND” , 1992 .
[63] Didier Dubois,et al. Fuzzy Sets, Logics, and Reasoning About Knowledge , 1999 .
[64] Biegfried Gottwald. Untersuchungen zur Mehrwertigen Mengenlehre. II: Untersuchungen zur Mehrwertigen Mengenlehre , 1976 .
[65] S. Jenei. Structure Of Girard Monoids On [0,1] , 2003 .
[66] D. Butnariu,et al. Triangular Norm-Based Measures and Games with Fuzzy Coalitions , 1993 .