Identification and Characterization of a New Latent Transforming Growth Factor-β-binding Protein, LTBP-4*

Transforming growth factor βs (TGF-βs) are secreted by most cell types as latent high molecular weight complexes consisting of TGF-β and its latency associated peptide (LAP) propeptide dimers, covalently linked to latent TGF-β-binding proteins (LTBPs). Currently, three different LTBPs are known (LTBPs 1, 2, and 3), all with highly similar protein domain structure consisting of epidermal growth factor-like and 8-Cys repeats. The 3rd 8-Cys repeat of LTBP-1 mediates its association with TGF-β1·LAP. By using an expressed sequence tag homologous to the 3rd 8-Cys repeat of human LTBP-1 as a probe, a novel cDNA similar to known LTBPs was cloned from human heart cDNA library. This cDNA was named LTBP-4 and found to exist in at least four different forms, generated by alternative splicing at the amino terminus and at the central epidermal growth factor repeat domain. One of the alternative amino-terminal forms contained an RGD sequence, indicating possible cell-surface interactions with integrins. LTBP-4 gene was localized to chromosomal position 19q13.1–19q13.2. The major LTBP-4 mRNA form is about 5.1 kilobase pairs in size and is predominantly expressed in the heart, aorta, uterus, and small intestine. Immunoblotting analysis indicated that LTBP-4 was secreted from cultured human lung fibroblasts both in a free form and in a disulfide bound complex with a TGF-β·LAP-like protein. Both LTBP-4 forms were also found to be deposited in the extracellular matrix. The matrix-associated LTBP-4 was susceptible to proteolytic release with plasmin. LTBP-4 is a new member of the growing LTBP-fibrillin family of proteins and offers an alternative means for the secretion and targeted matrix deposition of TGF-βs or related proteins.

[1]  Jussi Taipale,et al.  Growth factors in the extracellular matrix , 1997, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[2]  Y. Sugiura,et al.  Fluorescence detection of specific sequence of nucleic acids by oxazole yellow-linked oligonucleotides. Homogeneous quantitative monitoring of in vitro transcription. , 1996, Nucleic acids research.

[3]  R. Beavis,et al.  Identification and Characterization of an Eight-cysteine Repeat of the Latent Transforming Growth Factor-β Binding Protein-1 that Mediates Bonding to the Latent Transforming Growth Factor-β1* , 1996, The Journal of Biological Chemistry.

[4]  J. Taipale,et al.  Latent transforming growth factor-beta 1 and its binding protein are components of extracellular matrix microfibrils. , 1996, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[5]  F. Ramirez Fibrillln mutations in Marfan syndrome and related phenotypes. , 1996, Current opinion in genetics & development.

[6]  I. Campbell,et al.  Solution Structure of a Pair of Calcium-Binding Epidermal Growth Factor-like Domains: Implications for the Marfan Syndrome and Other Genetic Disorders , 1996, Cell.

[7]  R. Timpl,et al.  Cell adhesion and integrin binding to recombinant human fibrillin‐1 , 1996, FEBS letters.

[8]  J. Rosenbloom,et al.  Cell-type Specific Recognition of RGD- and Non-RGD-containing Cell Binding Domains in Fibrillin-1 (*) , 1996, The Journal of Biological Chemistry.

[9]  J. Taipale,et al.  Association of the small latent transforming growth factor‐beta with an eight cysteine repeat of its binding protein LTBP‐1. , 1996, The EMBO journal.

[10]  E Ruoslahti,et al.  RGD and other recognition sequences for integrins. , 1996, Annual review of cell and developmental biology.

[11]  K. Miyazono,et al.  Efficient Association of an Amino-terminally Extended Form of Human Latent Transforming Growth Factor- Binding Protein with the Extracellular Matrix (*) , 1995, The Journal of Biological Chemistry.

[12]  G. Sutherland,et al.  Bovine latent transforming growth factor beta 1-binding protein 2: molecular cloning, identification of tissue isoforms, and immunolocalization to elastin-associated microfibrils , 1995, Molecular and cellular biology.

[13]  W. Hu,et al.  Developmental expression of fibrillin genes suggests heterogeneity of extracellular microfibrils , 1995, The Journal of cell biology.

[14]  R. Mecham,et al.  Isolation of a Novel Latent Transforming Growth Factor-β Binding Protein Gene (LTBP-3) (*) , 1995, The Journal of Biological Chemistry.

[15]  J. Taipale,et al.  Human Mast Cell Chymase and Leukocyte Elastase Release Latent Transforming Growth Factor-β1 from the Extracellular Matrix of Cultured Human Epithelial and Endothelial Cells (*) , 1995, The Journal of Biological Chemistry.

[16]  K. Miyazono,et al.  Identification and characterization of LTBP-2, a novel latent transforming growth factor-beta-binding protein. , 1994, The Journal of biological chemistry.

[17]  P. Kovanen,et al.  Activation of human interstitial procollagenase through direct cleavage of the Leu83-Thr84 bond by mast cell chymase. , 1994, The Journal of biological chemistry.

[18]  J. Massagué,et al.  The TGF-β family and its composite receptors , 1994 .

[19]  S. Wahl,et al.  Transforming growth factor β: a matter of life and death , 1994 .

[20]  R. Mecham,et al.  Structure and expression of fibrillin-2, a novel microfibrillar component preferentially located in elastic matrices , 1994, The Journal of cell biology.

[21]  K. Miyazono,et al.  Latent transforming growth factor-beta 1 associates to fibroblast extracellular matrix via latent TGF-beta binding protein , 1994, The Journal of cell biology.

[22]  D. Kingsley,et al.  The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. , 1994, Genes & development.

[23]  M. Kuwano,et al.  The mechanism for the activation of latent TGF-beta during co-culture of endothelial cells and smooth muscle cells: cell-type specific targeting of latent TGF-beta to smooth muscle cells , 1993, The Journal of cell biology.

[24]  H. Dietz,et al.  Fibrillin binds calcium and is coded by cDNAs that reveal a multidomain structure and alternatively spliced exons at the 5' end. , 1993, Genomics.

[25]  K. Miyazono,et al.  Lack of the latent transforming growth factor beta binding protein in malignant, but not benign prostatic tissue. , 1993, Cancer research.

[26]  M. Benezra,et al.  Thrombin-induced release of active basic fibroblast growth factor-heparan sulfate complexes from subendothelial extracellular matrix. , 1993, Blood.

[27]  K. Miyazono,et al.  Role of the latent TGF-beta binding protein in the activation of latent TGF-beta by co-cultures of endothelial and smooth muscle cells , 1993, The Journal of cell biology.

[28]  J. Taipale,et al.  Release of transforming growth factor-beta 1 from the pericellular matrix of cultured fibroblasts and fibrosarcoma cells by plasmin and thrombin. , 1992, The Journal of biological chemistry.

[29]  K. Miyazono,et al.  Transforming growth factor-beta 1, -beta 2, and -beta 3 secreted by a human glioblastoma cell line. Identification of small and different forms of large latent complexes. , 1992, The Journal of biological chemistry.

[30]  K. Miyazono,et al.  Retention of the transforming growth factor-beta 1 precursor in the Golgi complex in a latent endoglycosidase H-sensitive form. , 1992, The Journal of biological chemistry.

[31]  K. Miyazono,et al.  A role of the latent TGF‐beta 1‐binding protein in the assembly and secretion of TGF‐beta 1. , 1991, The EMBO journal.

[32]  R. Glanville,et al.  Extraction of extendable beaded structures and their identification as fibrillin-containing extracellular matrix microfibrils. , 1991, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[33]  K. Yamaguchi,et al.  Molecular cloning of the large subunit of transforming growth factor type beta masking protein and expression of the mRNA in various rat tissues. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[34]  K. Miyazono,et al.  TGF-β1 binding protein: A component of the large latent complex of TGF-β1 with multiple repeat sequences , 1990, Cell.

[35]  Tian Xu,et al.  Molecular interactions between the protein products of the neurogenic loci Notch and Delta, two EGF-homologous genes in Drosophila , 1990, Cell.

[36]  H. Moses,et al.  Proteolytic activation of latent transforming growth factor-beta from fibroblast-conditioned medium , 1988, The Journal of cell biology.

[37]  E. Appella,et al.  Structure and function of epidermal growth factor‐like regions in proteins , 1988, FEBS letters.

[38]  E. Engvall,et al.  Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils , 1986, The Journal of cell biology.

[39]  M. Kozak Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes , 1986, Cell.

[40]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[41]  K. Alitalo,et al.  Isolation of the pericellular matrix of human fibroblast cultures , 1979, The Journal of cell biology.