Angular‐Momentum Transfer Mediated by a Vibronic‐Bound‐State
暂无分享,去创建一个
C. Marvinney | Y. Pai | M. Brahlek | G. Pokharel | Xun Li | Stephen D. Wilson | Athena Sefat | Jie Xing | Haoxiang Li | Michael Chilcote | Lucas Lindsay | Hu Miao | David Parker | Jason S Gardner | Liangbo Liang | Benjamin Lawrie
[1] M. Brando,et al. Complete field-induced spectral response of the spin-1/2 triangular-lattice antiferromagnet CsYbSe2 , 2021, npj quantum materials.
[2] Yongqiang Q. Cheng,et al. Quasiparticle twist dynamics in non-symmorphic materials , 2021, Materials Today Physics.
[3] A. Sefat,et al. Synthesis and anisotropic magnetism in quantum spin liquid candidates AYbSe2 (A = K and Rb) , 2021, APL Materials.
[4] Zdenek Sofer,et al. Chiral Phonons and Giant Magneto‐Optical Effect in CrBr3 2D Magnet , 2021, Advanced materials.
[5] U. Nowak,et al. Polarized phonons carry angular momentum in ultrafast demagnetization , 2021, Nature.
[6] Sarah Stowell. Datasets , 2021, Algebraic Analysis of Social Networks.
[7] D. Basko,et al. Flipping exciton angular momentum with chiral phonons in MoSe2/WSe2 heterobilayers , 2020, 2D Materials.
[8] Xiaodong Xu,et al. Direct observation of two-dimensional magnons in atomically thin CrI3 , 2020, 2001.07025.
[9] R. Custelcean,et al. A Class of Compounds Featuring Frustrated Triangular Magnetic Lattice CsRESe$_2$ (RE=La-Lu): Quantum Spin-Liquid Candidates , 2019, 1911.12278.
[10] Haitao Huang,et al. Chiral Coupling of Valley Excitons and Light through Photonic Spin–Orbit Interactions , 2019, Advanced Optical Materials.
[11] Lin-wang Wang,et al. Revealing angular momentum transfer channels and timescales in the ultrafast demagnetization process of ferromagnetic semiconductors , 2019, Proceedings of the National Academy of Sciences.
[12] Craig M. Brown,et al. Field-tunable quantum disordered ground state in the triangular-lattice antiferromagnet NaYbO2 , 2019, Nature Physics.
[13] Lifa Zhang,et al. Chiral phonons in two-dimensional materials , 2018, 2D Materials.
[14] C. Pfleiderer,et al. Magnetoelastic hybrid excitations in CeAuAl3 , 2018, Proceedings of the National Academy of Sciences.
[15] Y. Acremann,et al. The ultrafast Einstein–de Haas effect , 2018, Nature.
[16] Y. Wang,et al. Observation of chiral phonons , 2018, Science.
[17] John Salvatier,et al. Probabilistic programming in Python using PyMC3 , 2016, PeerJ Comput. Sci..
[18] I. Tanaka,et al. First principles phonon calculations in materials science , 2015, 1506.08498.
[19] S. Grimme,et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.
[20] G. Kresse,et al. From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .
[21] C. Humphreys,et al. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .
[22] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[23] Kresse,et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.
[24] G. Kresse,et al. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .
[25] Blöchl,et al. Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.
[26] A. R. Mackintosh,et al. Rare Earth Magnetism: Structures and Excitations , 1991 .
[27] T. Frauenheim,et al. Coupled quadrupole-phonon excitations: Inelastic Neutron scattering on van vleck paramagnet PrNi5 , 1983 .
[28] J. Koningstein. Electronic Raman Spectra. I. Raman Transitions of Trivalent Ytterbium, Europium, and Neodymium in Yttrium Gallium Garnet , 1967 .
[29] R. Orbach,et al. Spin-Lattice Relaxation in Ionic Solids , 1967 .
[30] B. Lawrie,et al. Mesoscale Interplay Between Phonons and Crystal Electric Field Excitations in Quantum Spin Liquid Candidate2† , 2022, Journal of Materials Chemistry C.