Angular‐Momentum Transfer Mediated by a Vibronic‐Bound‐State

The notion that phonons can carry pseudo‐angular momentum has many major consequences, including topologically protected phonon chirality, Berry curvature of phonon band structure, and the phonon Hall effect. When a phonon is resonantly coupled to an orbital state split by its crystal field environment, a so‐called vibronic bound state forms. Here, a vibronic bound state is observed in NaYbSe2, a quantum spin liquid candidate. In addition, field and polarization dependent Raman microscopy is used to probe an angular momentum transfer of ΔJz = ±ℏ between phonons and the crystalline electric field mediated by the vibronic bound stat. This angular momentum transfer between electronic and lattice subsystems provides new pathways for selective optical addressability of phononic angular momentum via electronic ancillary states.

[1]  M. Brando,et al.  Complete field-induced spectral response of the spin-1/2 triangular-lattice antiferromagnet CsYbSe2 , 2021, npj quantum materials.

[2]  Yongqiang Q. Cheng,et al.  Quasiparticle twist dynamics in non-symmorphic materials , 2021, Materials Today Physics.

[3]  A. Sefat,et al.  Synthesis and anisotropic magnetism in quantum spin liquid candidates AYbSe2 (A = K and Rb) , 2021, APL Materials.

[4]  Zdenek Sofer,et al.  Chiral Phonons and Giant Magneto‐Optical Effect in CrBr3 2D Magnet , 2021, Advanced materials.

[5]  U. Nowak,et al.  Polarized phonons carry angular momentum in ultrafast demagnetization , 2021, Nature.

[6]  Sarah Stowell Datasets , 2021, Algebraic Analysis of Social Networks.

[7]  D. Basko,et al.  Flipping exciton angular momentum with chiral phonons in MoSe2/WSe2 heterobilayers , 2020, 2D Materials.

[8]  Xiaodong Xu,et al.  Direct observation of two-dimensional magnons in atomically thin CrI3 , 2020, 2001.07025.

[9]  R. Custelcean,et al.  A Class of Compounds Featuring Frustrated Triangular Magnetic Lattice CsRESe$_2$ (RE=La-Lu): Quantum Spin-Liquid Candidates , 2019, 1911.12278.

[10]  Haitao Huang,et al.  Chiral Coupling of Valley Excitons and Light through Photonic Spin–Orbit Interactions , 2019, Advanced Optical Materials.

[11]  Lin-wang Wang,et al.  Revealing angular momentum transfer channels and timescales in the ultrafast demagnetization process of ferromagnetic semiconductors , 2019, Proceedings of the National Academy of Sciences.

[12]  Craig M. Brown,et al.  Field-tunable quantum disordered ground state in the triangular-lattice antiferromagnet NaYbO2 , 2019, Nature Physics.

[13]  Lifa Zhang,et al.  Chiral phonons in two-dimensional materials , 2018, 2D Materials.

[14]  C. Pfleiderer,et al.  Magnetoelastic hybrid excitations in CeAuAl3 , 2018, Proceedings of the National Academy of Sciences.

[15]  Y. Acremann,et al.  The ultrafast Einstein–de Haas effect , 2018, Nature.

[16]  Y. Wang,et al.  Observation of chiral phonons , 2018, Science.

[17]  John Salvatier,et al.  Probabilistic programming in Python using PyMC3 , 2016, PeerJ Comput. Sci..

[18]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[19]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[20]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[21]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[22]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[23]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[24]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[25]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[26]  A. R. Mackintosh,et al.  Rare Earth Magnetism: Structures and Excitations , 1991 .

[27]  T. Frauenheim,et al.  Coupled quadrupole-phonon excitations: Inelastic Neutron scattering on van vleck paramagnet PrNi5 , 1983 .

[28]  J. Koningstein Electronic Raman Spectra. I. Raman Transitions of Trivalent Ytterbium, Europium, and Neodymium in Yttrium Gallium Garnet , 1967 .

[29]  R. Orbach,et al.  Spin-Lattice Relaxation in Ionic Solids , 1967 .

[30]  B. Lawrie,et al.  Mesoscale Interplay Between Phonons and Crystal Electric Field Excitations in Quantum Spin Liquid Candidate2† , 2022, Journal of Materials Chemistry C.