Microstructure and room temperature fracture toughness of Nb–Si-based alloys with Sr addition

[1]  Yueling Guo,et al.  Microstructure and fracture toughness of Nb-Si based alloys with Ta and W additions , 2018 .

[2]  Yueling Guo,et al.  Simultaneous improvement in fracture toughness and oxidation resistance of Nb-Si based alloys by vanadium addition , 2017 .

[3]  P. Tsakiropoulos,et al.  The impact of Ti and temperature on the stability of Nb5Si3 phases: a first-principles study , 2017, Science and technology of advanced materials.

[4]  Yueling Guo,et al.  High-temperature oxidation behavior of Nb–Si-based alloy with separate vanadium, tantalum, tungsten and zirconium addition , 2017, Rare Metals.

[5]  N. Chawla,et al.  Effect of gallium addition on the microstructure and micromechanical properties of constituents in NbSi based alloys , 2017 .

[6]  Lijuan Zhang,et al.  Mechanical alloying behavior of Nb–Ti–Si-based alloy made from elemental powders by ball milling process , 2017, Rare Metals.

[7]  Youxing Yu,et al.  The deformation and fracture modes of fine and coarsened NbSS phase in a Nb-20Si-24Ti-2Al-2Cr alloy with a NbSS/Nb5Si3 microstructure , 2017 .

[8]  Wei Liu,et al.  Failure mode transition of Nb phase from cleavage to dimple/tear in Nb-16Si-based alloys prepared via spark plasma sintering , 2016 .

[9]  L. Jia,et al.  Study of the fracture mechanism of NbSS/Nb5Si3 in situ composite: Based on a mechanical characterization of interfacial strength , 2016 .

[10]  Ye Tang,et al.  High temperature deformation behavior of an optimized Nb–Si based ultrahigh temperature alloy , 2016 .

[11]  Shu Beng Tor,et al.  Spatial and geometrical-based characterization of microstructure and microhardness for an electron beam melted Ti–6Al–4V component , 2016 .

[12]  Wai Yee Yeong,et al.  Selective laser melting of titanium alloy with 50 wt% tantalum: Microstructure and mechanical properties , 2016 .

[13]  Shi-cheng Feng,et al.  Microstructure evolution and formation mechanism of laser-ignited SHS joining between Cf/Al composites and TiAl alloys with Ni–Al–Ti interlayer , 2017, Rare Metals.

[14]  L. Jia,et al.  Microstructure evolution of eutectic Nb–24Ti–15Si–4Cr–2Al–2Hf alloy processed by directional solidification , 2017, Rare Metals.

[15]  C. Esling,et al.  Twin-controlled growth of eutectic Si in unmodified and Sr-modified Al-12.7%Si alloys investigated by SEM/EBSD , 2015 .

[16]  L. Jia,et al.  Effects of minor Si on microstructures and room temperature fracture toughness of niobium solid solution alloys , 2015 .

[17]  L. Jia,et al.  Room temperature mechanical properties and high temperature oxidation resistance of a high Cr containing Nb–Si based alloy , 2015 .

[18]  H. Zhao,et al.  Refining performance of Al–3Ti–0.2C–5Sr on A356 alloy and electron microanalysis of ternary Al–Ti–Sr phases , 2017, Rare Metals.

[19]  B. Guo,et al.  Effect of withdrawal rates on microstructures and room temperature fracture toughness in a directionally solidified Nb–Ti–Cr–Si based alloy , 2014 .

[20]  M. Limin,et al.  The microstructure evolution of directionally solidified Nb-22Ti-14Si-4Cr-2Al-2Hf alloy during heat treatment , 2013 .

[21]  F. Pan,et al.  Effect of Sr addition on the grain refinement of AZ31 magnesium alloys , 2013 .

[22]  L. Jia,et al.  Eutectic formation during directional solidification: Effect of the withdrawal rate , 2013 .

[23]  L. Jia,et al.  The microstructure optimizing of the Nb–14Si–22Ti–4Cr–2Al–2Hf alloy processed by directional solidification , 2012 .

[24]  J. Banhart,et al.  The role of strontium in modifying aluminium–silicon alloys , 2012 .

[25]  Hu Zhang,et al.  Mechanical properties of directionally solidified Nb–Mo–Si-based alloys with aligned Nbss/Nb5Si3 lamellar structure , 2011 .

[26]  G. Cheng,et al.  Microstructure evolution and room temperature deformation of a unidirectionally solidified Nb-22Ti-16Si-3Ta-2Hf-7Cr-3Al-0.2Ho (at.%) alloy , 2011 .

[27]  Hu Zhang,et al.  The effects of melting technologies on the microstructures and properties of Nb–16Si–22Ti–2Al–2Hf–17Cr alloy , 2010 .

[28]  P. Tsakiropoulos,et al.  Study of the role of Al, Cr and Ti additions in the microstructure of Nb–18Si–5Hf base alloys , 2010 .

[29]  J. Perepezko The Hotter the Engine, the Better , 2009, Science.

[30]  Wang Jun,et al.  Effects of B on the Microstructure and Oxidation Resistance of Nb-Ti-Si-based Ultrahigh-temperature Alloy , 2009 .

[31]  B. Koo,et al.  Effects of Hybrid Voltages on Oxide Formation on 6061 Al-alloys During Plasma Electrolytic Oxidation , 2009 .

[32]  F. Pan,et al.  Comparison of Sb and Sr on modification and refinement of Mg2Si phase in AZ61-0.7Si magnesium alloy , 2009 .

[33]  Jian Yang,et al.  Effect of strontium on the grain refining efficiency of Mg-3Al alloy refined by carbon inoculation , 2009 .

[34]  F. Pan,et al.  Processing Effects on Grain Refinement of AZ31 Magnesium Alloy Treated with a Commercial Al-10Sr Master Alloy , 2009, Journal of Materials Engineering and Performance.

[35]  Lanzhang Zhou,et al.  Microstructures and mechanical properties of cast Nb-Ti-Si-Zr alloys , 2008 .

[36]  P. Tsakiropoulos,et al.  A study of the microstructures and oxidation of Nb–Si–Cr–Al–Mo in situ composites alloyed with Ti, Hf and Sn , 2007 .

[37]  G. Shao,et al.  A study of the effects of Hf and Sn additions on the microstructure of Nbss/Nb5Si3 based in situ composites , 2007 .

[38]  Y. Kimura,et al.  Fracture toughness and high temperature strength of unidirectionally solidified Nb–Si binary and Nb–Ti–Si ternary alloys , 2006 .

[39]  R. Reed The Superalloys: Fundamentals and Applications , 2006 .

[40]  R. Reed The Superalloys by Roger C. Reed , 2006 .

[41]  W. Ding,et al.  Effect of strontium on the microstructure, mechanical properties, and fracture behavior of AZ31 magnesium alloy , 2006 .

[42]  Peijie Li,et al.  Microstructure and properties of AZ91D alloy with Ca additions , 2005 .

[43]  Y. Mishima,et al.  Effects of Zr on the eutectoid decomposition behavior of Nb3Si into (Nb)/Nb5Si3 , 2005 .

[44]  S. Hanada,et al.  High-temperature strength and room-temperature toughness of Nb–W–Si–B alloys prepared by arc-melting , 2004 .

[45]  B. Bewlay,et al.  A review of very-high-temperature Nb-silicide-based composites , 2003 .

[46]  J. H. Westbrook,et al.  Ultrahigh-Temperature Materials for Jet Engines , 2003 .

[47]  K. Chan Alloying effects on fracture mechanisms in Nb-based intermetallic in-situ composites , 2002 .

[48]  K. Chan A computational approach to designing ductile Nb-Ti-Cr-Al solid-solution alloys , 2001 .

[49]  Won-Yong Kim,et al.  Microstructure and room temperature fracture toughness of Nbss/Nb5Si3 in situ composites , 2001 .

[50]  D. Davidson,et al.  Fatigue and fracture toughness of a Nb-Ti-Cr-Al-X single-phase alloy at ambient temperature , 2000 .

[51]  A. K. Dahle,et al.  The role of solute in grain refinement of magnesium , 2000 .

[52]  D. Davidson,et al.  Effects of Ti addition on cleavage fracture in Nb-Cr-Ti solid-solution alloys , 1999 .

[53]  D. Davidson,et al.  Fracture toughness and fatigue crack growth in rapidly quenched Nb-Cr-Ti In situ composites , 1997 .

[54]  B. Bewlay,et al.  The balance of mechanical and environmental properties of a multielement niobium-niobium silicide-basedIn Situ composite , 1996 .

[55]  David L. Davidson,et al.  The effects on fracture toughness of ductile-phase composition and morphology in Nb-Cr-Ti and Nb-Siin situ composites , 1996 .

[56]  Kwai S. Chan,et al.  The fracture toughness of niobium-based,in situ composites , 1996 .

[57]  D. Dimiduk,et al.  The development of Nb-based advanced intermetallic alloys for structural applications , 1996 .

[58]  B. Bewlay,et al.  Solidification processing of high temperature intermetallic eutectic-based alloys , 1995 .

[59]  William D. Callister,et al.  Materials Science and Engineering: An Introduction , 1985 .