Preliminary analysis of the Hayabusa2 samples returned from C-type asteroid Ryugu

[1]  M. Abe,et al.  Development of a multispectral stereo-camera system comparable to Hayabusa2 optical navigation camera (ONC-T) for observing samples returned from asteroid (162173) Ryugu , 2021, Planetary and Space Science.

[2]  Tomohiro Yamaguchi,et al.  Anomalously porous boulders on (162173) Ryugu as primordial materials from its parent body , 2021, Nature Astronomy.

[3]  J. Head,et al.  China's Chang'e-5 landing site: Geology, stratigraphy, and provenance of materials , 2021 .

[4]  W. Herbst,et al.  The Macroporosity of Rubble Pile Asteroid Ryugu and Implications for the Origin of Chondrules , 2021, 2104.06484.

[5]  C. Pilorget,et al.  Global-scale albedo and spectro-photometric properties of Ryugu from NIRS3/Hayabusa2, implications for the composition of Ryugu and the representativity of the returned samples , 2021 .

[6]  C. Pilorget,et al.  Thermally altered subsurface material of asteroid (162173) Ryugu , 2021, Nature Astronomy.

[7]  T. Morota,et al.  Global photometric properties of (162173) Ryugu , 2020 .

[8]  J. Biele,et al.  Macroporosity and Grain Density of Rubble Pile Asteroid (162173) Ryugu , 2020, Journal of Geophysical Research: Planets.

[9]  Makoto Yoshikawa,et al.  Hayabusa2 mission status: Landing, roving and cratering on asteroid Ryugu , 2020 .

[10]  O. Mori,et al.  Sample collection from asteroid (162173) Ryugu by Hayabusa2: Implications for surface evolution , 2020, Science.

[11]  F. Terui,et al.  An artificial impact on the asteroid (162173) Ryugu formed a crater in the gravity-dominated regime , 2020, Science.

[12]  Tomohiro Yamaguchi,et al.  Highly porous nature of a primitive asteroid revealed by thermal imaging , 2020, Nature.

[13]  C. Sotin,et al.  A carbonaceous chondrite and cometary origin for icy moons of Jupiter and Saturn , 2020, Earth and Planetary Science Letters.

[14]  Ryan A. Zeigler,et al.  Advanced Curation of Astromaterials for Planetary Science , 2019, Space Science Reviews.

[15]  Hirotaka Sawada,et al.  Boulder size and shape distributions on asteroid Ryugu , 2019, Icarus.

[16]  F. Scholten,et al.  Images from the surface of asteroid Ryugu show rocks similar to carbonaceous chondrite meteorites , 2019, Science.

[17]  R. Jaumann,et al.  Low thermal conductivity boulder with high porosity identified on C-type asteroid (162173) Ryugu , 2019, Nature Astronomy.

[18]  R. Jaumann,et al.  Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu—A spinning top–shaped rubble pile , 2019, Science.

[19]  R. Jaumann,et al.  The geomorphology, color, and thermal properties of Ryugu: Implications for parent-body processes , 2019, Science.

[20]  M. Yamada,et al.  The surface composition of asteroid 162173 Ryugu from Hayabusa2 near-infrared spectroscopy , 2019, Science.

[21]  T. Morota,et al.  Updated inflight calibration of Hayabusa2's optical navigation camera (ONC) for scientific observations during the cruise phase , 2018, Icarus.

[22]  T. Onaka,et al.  AKARI/IRC near-infrared asteroid spectroscopic survey: AcuA-spec , 2018, Publications of the Astronomical Society of Japan.

[23]  G. Flynn,et al.  Physical properties of the stone meteorites: Implications for the properties of their parent bodies , 2017, Geochemistry.

[24]  Hirotaka Sawada,et al.  Hayabusa2 Sample Catcher and Container: Metal-Seal System for Vacuum Encapsulation of Returned Samples with Volatiles and Organic Compounds Recovered from C-Type Asteroid Ryugu , 2017 .

[25]  M. Taguchi,et al.  Thermal Infrared Imaging Experiments of C-Type Asteroid 162173 Ryugu on Hayabusa2 , 2017 .

[26]  Hirotaka Sawada,et al.  Hayabusa2 Sampler: Collection of Asteroidal Surface Material , 2017 .

[27]  C. Pilorget,et al.  The MicrOmega Investigation Onboard Hayabusa2 , 2017 .

[28]  T. Morota,et al.  Preflight Calibration Test Results for Optical Navigation Camera Telescope (ONC-T) Onboard the Hayabusa2 Spacecraft , 2017 .

[29]  R. Jaumann,et al.  The Camera of the MASCOT Asteroid Lander on Board Hayabusa 2 , 2017 .

[30]  Hajime Yano,et al.  The Small Carry-on Impactor (SCI) and the Hayabusa2 Impact Experiment , 2017 .

[31]  Hiroki Senshu,et al.  NIRS3: The Near Infrared Spectrometer on Hayabusa2 , 2017 .

[32]  M. Taguchi,et al.  Thermal Infrared Imaging Experiments of C-Type Asteroid 162173 Ryugu on Hayabusa2 , 2016, Space Science Reviews.

[33]  Gonzalo Tancredi,et al.  Distribution of boulders and the gravity potential on asteroid Itokawa , 2015 .

[34]  Junichiro Kawaguchi,et al.  Hayabusa‐returned sample curation in the Planetary Material Sample Curation Facility of JAXA , 2014 .

[35]  J. Knollenberg,et al.  The MASCOT Radiometer MARA for the Hayabusa 2 Mission , 2013 .

[36]  Akio Makishima,et al.  Space environment of an asteroid preserved on micrograins returned by the Hayabusa spacecraft , 2012, Proceedings of the National Academy of Sciences.

[37]  Junichiro Kawaguchi,et al.  Itokawa Dust Particles: A Direct Link Between S-Type Asteroids and Ordinary Chondrites , 2011, Science.

[38]  Sara S. Russell,et al.  Modal abundances of CAIs: Implications for bulk chondrite element abundances and fractionations , 2008, 0810.2174.

[39]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[40]  Andrew Steele,et al.  Comet 81P/Wild 2 Under a Microscope , 2006, Science.

[41]  Daniel T. Britt,et al.  Stony meteorite porosities and densities: A review of the data through 2001 , 2003 .

[42]  M. Zolensky,et al.  Mineralogy and noble-gas signatures of the carbonate-rich lithology of the Tagish Lake carbonaceous chondrite: evidence for an accretionary breccia , 2003 .

[43]  Richard P. Binzel,et al.  Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: A Feature-Based Taxonomy , 2002 .

[44]  Michael E. Zolensky,et al.  Mineralogy of Tagish Lake: An ungrouped type 2 carbonaceous chondrite , 2002 .

[45]  M. Zolensky,et al.  In-Situ Oxygen Isotopic Composition of Tagish Lake: An Ungrouped Type 2 Carbonaceous Chondrite , 2001 .

[46]  C. M. Pieters,et al.  Strength of mineral absorption features in the transmitted component of near-infrared reflected light - First results from RELAB. [spectrogoniometer for planetary and lunar surface composition experiments] , 1983 .

[47]  R. Hutchison Meteorites: A Petrologic, Chemical and Isotopic Synthesis , 1981 .

[48]  G. Turner Argon-40/ Argon-39 Dating of Lunar Rock Samples , 1970, Science.

[49]  C. Bonadonna,et al.  On the characterization of size and shape of irregular particles , 2015 .

[50]  V. L. Barsukov Preliminary data for the regolith core brought to earth by the automatic lunar station Luna 24. , 1977 .