A leapfrog multigrid algorithm for the optimal control of parabolic PDEs with Robin boundary conditions

We develop a second-order finite difference scheme for solving the first-order necessary optimality systems arising from the optimal control of parabolic PDEs with Robin boundary conditions. Under the framework of matrix analysis, the proposed leapfrog scheme is shown to be unconditionally stable and second-order convergent for both time and spatial variables, without the requirement of the classical Courant-Friedrichs-Lewy (CFL) condition on the spatial and temporal mesh step sizes. Moreover, the developed leapfrog scheme provides a well-structured discrete algebraic system that allows us to establish an effective multigrid iterative fast solver. The resultant multigrid solver demonstrates a mesh-independent convergence rate and a linear time complexity. Numerical experiments are provided to illustrate the accuracy and efficiency of the proposed leapfrog scheme.

[1]  Michael Ulbrich,et al.  Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces , 2011, MOS-SIAM Series on Optimization.

[2]  R. LeVeque Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems (Classics in Applied Mathematics Classics in Applied Mathemat) , 2007 .

[3]  Alfio Borzì,et al.  Computational Optimization of Systems Governed by Partial Differential Equations , 2012, Computational science and engineering.

[4]  Alfio Borzì 5. Space-Time Multigrid Methods for Solving Unsteady Optimal Control Problems , 2007 .

[5]  Alfio Borzì,et al.  Multigrid Solution of a Lavrentiev-Regularized State-Constrained Parabolic Control Problem , 2012 .

[6]  Wolfgang Hackbusch,et al.  A numerical method for solving parabolic equations with opposite orientations , 1978, Computing.

[7]  William L. Briggs,et al.  A multigrid tutorial, Second Edition , 2000 .

[8]  Graham Horton,et al.  A Space-Time Multigrid Method for Parabolic Partial Differential Equations , 1995, SIAM J. Sci. Comput..

[9]  Mingqing Xiao,et al.  A new semi-smooth Newton multigrid method for control-constrained semi-linear elliptic PDE problems , 2016, J. Glob. Optim..

[10]  W. Hackbusch On the Fast Solving of Parabolic Boundary Control Problems , 1979 .

[11]  Max Gunzburger,et al.  Perspectives in flow control and optimization , 1987 .

[12]  Martin Stoll,et al.  Fast Iterative Solution of Reaction-Diffusion Control Problems Arising from Chemical Processes , 2013, SIAM J. Sci. Comput..

[13]  Alfio Borzì,et al.  Multigrid methods for parabolic distributed optimal control problems , 2003 .

[14]  Randall J. LeVeque,et al.  Finite difference methods for ordinary and partial differential equations - steady-state and time-dependent problems , 2007 .

[15]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[16]  K. Hoffmann,et al.  Optimal Control of Partial Differential Equations , 1991 .

[17]  J. Strikwerda Finite Difference Schemes and Partial Differential Equations , 1989 .

[18]  Wolfgang Hackbusch,et al.  Numerical solution of linear and nonlinear parabolic control problems , 1981 .

[19]  Alfio Borzì,et al.  Multigrid second-order accurate solution of parabolic control-constrained problems , 2012, Comput. Optim. Appl..

[20]  Luca F. Pavarino,et al.  Mathematical cardiac electrophysiology/ Piero Colli Franzone, Luca F. Pavarino, Simone Scacchi , 2014 .

[21]  Yuan Wang,et al.  Optimal Control Method of Parabolic Partial Differential Equations and Its Application to Heat Transfer Model in Continuous Cast Secondary Cooling Zone , 2015 .

[22]  Alfio Borzì,et al.  Multigrid Methods for PDE Optimization , 2009, SIAM Rev..

[23]  Oliver Lass,et al.  Implementation and analysis of multigrid schemes with finite elements for elliptic optimal control problems , 2009, Computing.

[24]  Buyang Li,et al.  Leapfrog multigrid methods for parabolic optimal control problems , 2015, The 27th Chinese Control and Decision Conference (2015 CCDC).

[25]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[26]  Thomas Slawig,et al.  A Smooth Regularization of the Projection Formula for Constrained Parabolic Optimal Control Problems , 2011 .

[27]  Alfio Borzì,et al.  Multigrid Methods and Sparse-Grid Collocation Techniques for Parabolic Optimal Control Problems with Random Coefficients , 2009, SIAM J. Sci. Comput..

[28]  Alfio Borzì,et al.  Multigrid Optimization Methods for the Optimal Control of Convection–Diffusion Problems with Bilinear Control , 2016, J. Optim. Theory Appl..

[29]  A. Borzì,et al.  Experiences with a space–time multigrid method for the optimal control of a chemical turbulence model , 2005 .

[30]  Andrew J. Wathen,et al.  Optimal Solvers for PDE-Constrained Optimization , 2010, SIAM J. Sci. Comput..

[31]  Stefan Turek,et al.  A Space-Time Multigrid Method for Optimal Flow Control , 2012, Constrained Optimization and Optimal Control for Partial Differential Equations.

[32]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[33]  Alfio Borzì,et al.  Distributed optimal control of lambda–omega systems , 2006, J. Num. Math..

[34]  Stefan Takacs,et al.  Convergence analysis of multigrid methods with collective point smoothers for optimal control problems , 2011, Comput. Vis. Sci..

[35]  Kazufumi Ito,et al.  Lagrange multiplier approach to variational problems and applications , 2008, Advances in design and control.

[36]  Wolfgang Hackbusch,et al.  Elliptic Differential Equations: Theory and Numerical Treatment , 2017 .

[37]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[38]  Mingqing Xiao,et al.  A new semi-smooth Newton multigrid method for parabolic PDE optimal control problems , 2014, 53rd IEEE Conference on Decision and Control.

[39]  K. Morton,et al.  Numerical Solution of Partial Differential Equations: Introduction , 2005 .

[40]  Do Y. Kwak,et al.  Accuracy and Convergence Properties of the Finite Difference Multigrid Solution of an Optimal Control Optimality System , 2002, SIAM J. Control. Optim..

[41]  Wei Gong,et al.  Space-time finite element approximation of parabolic optimal control problems , 2012, J. Num. Math..

[42]  Mingqing Xiao,et al.  A leapfrog semi-smooth Newton-multigrid method for semilinear parabolic optimal control problems , 2016, Comput. Optim. Appl..

[43]  J. W. Thomas Numerical Partial Differential Equations , 1999 .

[44]  Kaisa Miettinen,et al.  Optimal control of cooling process in continuous casting of steel using a visualization-based multi-criteria approach , 2005 .

[45]  Martin Stoll,et al.  Regularization-Robust Preconditioners for Time-Dependent PDE-Constrained Optimization Problems , 2012, SIAM J. Matrix Anal. Appl..

[46]  R. Touzani,et al.  Numerical investigation of optimal control of induction heating processes , 2001 .

[47]  F. Tröltzsch,et al.  PDE-constrained optimization of time-dependent 3D electromagnetic induction heating by alternating voltages , 2012 .

[48]  Karl Kunisch,et al.  Numerical solution for optimal control of the reaction-diffusion equations in cardiac electrophysiology , 2011, Comput. Optim. Appl..

[49]  Fredi Tröltzsch,et al.  ON REGULARIZATION METHODS FOR THE NUMERICAL SOLUTION OF PARABOLIC CONTROL PROBLEMS WITH POINTWISE STATE CONSTRAINTS , 2009 .

[50]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[51]  Ekkehard W. Sachs,et al.  Preconditioned Conjugate Gradient Method for Optimal Control Problems with Control and State Constraints , 2010, SIAM J. Matrix Anal. Appl..

[52]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[53]  Thomas Apel,et al.  Crank-Nicolson Schemes for Optimal Control Problems with Evolution Equations , 2010 .