Novel organic solvent-responsive expression vectors for biocatalysis: application for development of an organic solvent-tolerant biodesulfurizing strain.

[1]  M. A. Dinamarca,et al.  Biodesulfurization of gas oil using inorganic supports biomodified with metabolically active cells immobilized by adsorption. , 2010, Bioresource technology.

[2]  A. Ziaee,et al.  Biodesulfurization of dibenzothiophene by a newly isolated Rhodococcus erythropolis strain. , 2010, Bioresource technology.

[3]  Xu Sun,et al.  A Novel Insertion Sequence Derepresses Efflux Pump Expression and Preadapts Pseudomonas putida S12 for Extreme Solvent Stress , 2009, Journal of bacteriology.

[4]  J. D. de Winde,et al.  C1 compounds as auxiliary substrate for engineered Pseudomonas putida S12 , 2009, Applied Microbiology and Biotechnology.

[5]  Han Chen,et al.  Elucidation of 2-hydroxybiphenyl effect on dibenzothiophene desulfurization by Microbacterium sp. strain ZD-M2. , 2008, Bioresource technology.

[6]  C. Larroche,et al.  In situ bioremediation of monoaromatic pollutants in groundwater: a review. , 2008, Bioresource technology.

[7]  K. Oh,et al.  Construction of an Escherichia-Pseudomonas shuttle vector containing an aminoglycoside phosphotransferase gene and a lacZ'' Gene for alpha-complementation. , 2006, Journal of microbiology.

[8]  Cuiqing Ma,et al.  The Surfactant Tween 80 Enhances Biodesulfurization , 2006, Applied and Environmental Microbiology.

[9]  P. Xu,et al.  Biodesulfurization in Biphasic Systems Containing Organic Solvents , 2006, Applied and Environmental Microbiology.

[10]  J. Kilbane,et al.  Microbial biocatalyst developments to upgrade fossil fuels. , 2006, Current opinion in biotechnology.

[11]  H. Schweizer,et al.  A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation. , 2006, Journal of microbiological methods.

[12]  J. Cronan A family of arabinose-inducible Escherichia coli expression vectors having pBR322 copy control. , 2006, Plasmid.

[13]  N. Wierckx,et al.  Engineering of Solvent-Tolerant Pseudomonas putida S12 for Bioproduction of Phenol from Glucose , 2005, Applied and Environmental Microbiology.

[14]  H. Heipieper,et al.  Prediction of the Adaptability of Pseudomonas putida DOT-T1E to a Second Phase of a Solvent for Economically Sound Two-Phase Biotransformations , 2005, Applied and Environmental Microbiology.

[15]  Noboru Takiguchi,et al.  Isolation and characterization of solvent-tolerant Pseudomonas putida strain T-57, and its application to biotransformation of toluene to cresol in a two-phase (organic-aqueous) system , 2005, Journal of Industrial Microbiology and Biotechnology.

[16]  K. Maruhashi,et al.  Recombinant Pseudomonas putida carrying both the dsz and hcu genes can desulfurize dibenzothiophene in n-tetradecane , 2003, Biotechnology Letters.

[17]  P. H. Clarke The metabolic versatility of pseudomonads , 1982, Antonie van Leeuwenhoek.

[18]  S. Bhosle,et al.  Industrial Potential of Organic Solvent Tolerant Bacteria , 2004, Biotechnology progress.

[19]  Owen P. Ward,et al.  Recent Advances in Petroleum Microbiology , 2003, Microbiology and Molecular Biology Reviews.

[20]  H. Schweizer Efflux as a mechanism of resistance to antimicrobials in Pseudomonas aeruginosa and related bacteria: unanswered questions. , 2003, Genetics and molecular research : GMR.

[21]  D. Janssen,et al.  Substrate Specificity and Enantioselectivity of 4-Hydroxyacetophenone Monooxygenase , 2003, Applied and Environmental Microbiology.

[22]  Kenneth N Timmis,et al.  Pseudomonas putida: a cosmopolitan opportunist par excellence. , 2002, Environmental microbiology.

[23]  H. Schweizer Vectors to express foreign genes and techniques to monitor gene expression in Pseudomonads. , 2001, Current opinion in biotechnology.

[24]  M. Seeger,et al.  New alkane-responsive expression vectors for Escherichia coli and pseudomonas. , 2001, Plasmid.

[25]  J. D. de Bont,et al.  An Insertion Sequence Prepares Pseudomonas putida S12 for Severe Solvent Stress* , 2001, The Journal of Biological Chemistry.

[26]  J. D. de Bont,et al.  Identification and molecular characterization of an efflux system involved in Pseudomonas putida S12 multidrug resistance. , 2001, Microbiology.

[27]  J. D. de Bont,et al.  Active Efflux of Organic Solvents byPseudomonas putida S12 Is Induced by Solvents , 1998, Journal of bacteriology.

[28]  J. D. de Bont,et al.  Bacteria tolerant to organic solvents , 1998, Extremophiles.

[29]  Mami Yamamoto,et al.  Involvement of Outer Membrane Protein TolC, a Possible Member of the mar-sox Regulon, in Maintenance and Improvement of Organic Solvent Tolerance of Escherichia coli K-12 , 1998, Journal of bacteriology.

[30]  Gerben J. Zylstra,et al.  Identification and Molecular Characterization of an Efflux Pump Involved in Pseudomonas putida S12 Solvent Tolerance* , 1998, The Journal of Biological Chemistry.

[31]  R. Rogers,et al.  Physiological properties of a Pseudomonas strain which grows with p-xylene in a two-phase (organic-aqueous) medium , 1992, Applied and environmental microbiology.

[32]  Jeffrey H. Miller A Short Course in Bacterial Genetics: A Laboratory Manual and Handbook for Escherichia coli and Rela , 1992 .

[33]  H. Blöcker,et al.  Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector. , 1986, Gene.

[34]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[35]  P. Williams,et al.  Metabolism of Benzoate and the Methylbenzoates by Pseudomonas putida (arvilla) mt-2: Evidence for the Existence of a TOL Plasmid , 1974, Journal of bacteriology.