Drift time-specific collision energies enable deep-coverage data-independent acquisition proteomics

We present a data-independent acquisition mass spectrometry method, ultradefinition (UD) MSE. This approach utilizes ion mobility drift time-specific collision-energy profiles to enhance precursor fragmentation efficiency over current MSE and high-definition (HD) MSE data-independent acquisition techniques. UDMSE provided high reproducibility and substantially improved proteome coverage of the HeLa cell proteome compared to previous implementations of MSE, and it also outperformed a state-of-the-art data-dependent acquisition workflow. Additionally, we report a software tool, ISOQuant, for processing label-free quantitative UDMSE data.

[1]  Kai Stühler,et al.  Retention time alignment algorithms for LC/MS data must consider non-linear shifts , 2009, Bioinform..

[2]  John D. Venable,et al.  Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra , 2004, Nature Methods.

[3]  M. Gorenstein,et al.  Quantitative proteomic analysis by accurate mass retention time pairs. , 2005, Analytical chemistry.

[4]  M. Mann,et al.  Proteomics on an Orbitrap Benchtop Mass Spectrometer Using All-ion Fragmentation , 2010, Molecular & Cellular Proteomics.

[5]  Ludovic C. Gillet,et al.  Targeted Data Extraction of the MS/MS Spectra Generated by Data-independent Acquisition: A New Concept for Consistent and Accurate Proteome Analysis* , 2012, Molecular & Cellular Proteomics.

[6]  William Stafford Noble,et al.  A review of statistical methods for protein identification using tandem mass spectrometry. , 2012, Statistics and its interface.

[7]  Pietro Traldi,et al.  Rapid Commun. Mass Spectrom.10. 1629-1637 (1996) Matrix-assisted Laser Desorption/Ionisation Mass Spectrometry in Milk Science , 1997 .

[8]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[9]  Susan E Abbatiello,et al.  Effect of collision energy optimization on the measurement of peptides by selected reaction monitoring (SRM) mass spectrometry. , 2010, Analytical chemistry.

[10]  R. Bateman,et al.  Applications of a travelling wave-based radio-frequency-only stacked ring ion guide. , 2004, Rapid communications in mass spectrometry : RCM.

[11]  Stefan Tenzer,et al.  Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. , 2011, ACS nano.

[12]  Ronald J Moore,et al.  An LC-IMS-MS platform providing increased dynamic range for high-throughput proteomic studies. , 2010, Journal of proteome research.

[13]  Richard J. Lavallee,et al.  Optimized fast and sensitive acquisition methods for shotgun proteomics on a quadrupole orbitrap mass spectrometer. , 2012, Journal of proteome research.

[14]  Johannes P C Vissers,et al.  Using ion purity scores for enhancing quantitative accuracy and precision in complex proteomics samples , 2012, Analytical and Bioanalytical Chemistry.

[15]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[16]  M. Gorenstein,et al.  Absolute Quantification of Proteins by LCMSE , 2006, Molecular & Cellular Proteomics.

[17]  R. Aebersold,et al.  Mass spectrometry-based proteomics , 2003, Nature.

[18]  M. Mann,et al.  More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS. , 2011, Journal of proteome research.

[19]  J. Reilly,et al.  Extracted Fragment Ion Mobility Distributions: A New Method for Complex Mixture Analysis. , 2012, International journal of mass spectrometry.

[20]  R. Aebersold,et al.  A statistical model for identifying proteins by tandem mass spectrometry. , 2003, Analytical chemistry.

[21]  Dan Golick,et al.  Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures , 2009, Proteomics.

[22]  Johannes Griss,et al.  The Proteomics Identifications (PRIDE) database and associated tools: status in 2013 , 2012, Nucleic Acids Res..

[23]  Chris Hughes,et al.  Using ion mobility data to improve peptide identification: intrinsic amino acid size parameters. , 2011, Journal of proteome research.

[24]  Alan R. Dabney,et al.  A statistical method for assessing peptide identification confidence in accurate mass and time tag proteomics. , 2011, Analytical chemistry.

[25]  Brendan MacLean,et al.  Bioinformatics Applications Note Gene Expression Skyline: an Open Source Document Editor for Creating and Analyzing Targeted Proteomics Experiments , 2022 .

[26]  D. Goodlett,et al.  Faster, quantitative, and accurate precursor acquisition independent from ion count. , 2011, Analytical chemistry.

[27]  M. Mann,et al.  Universal sample preparation method for proteome analysis , 2009, Nature Methods.

[28]  M. Gorenstein,et al.  The detection, correlation, and comparison of peptide precursor and product ions from data independent LC‐MS with data dependant LC‐MS/MS , 2009, Proteomics.