Max-plus linear observer: Application to manufacturing systems

Abstract This paper deals with the observer design for max-plus linear systems. The approach is based on the residuation theory which is suitable to deal with linear mapping inversion in idempotent semiring. An illustrative example allows to discuss about a practical implementation.

[1]  Jörg Raisch,et al.  A novel hierarchical control architecture for a class of discrete-event systems , 2004 .

[2]  Daniel Krob,et al.  Complete Systems of B-Rational Identities , 1991, Theor. Comput. Sci..

[3]  Cottenceau Bertrand,et al.  Data Processing Tool for Calculation in Dioid , 2000 .

[4]  Laurent Houssin Contributions à la commande des systèmes (max,+)-linéaires : applications aux réseaux de transport , 2006 .

[5]  Laurent Hardouin,et al.  Disturbance Decoupling of Timed Event Graphs by Output Feedback Controller , 2002 .

[6]  H. Laurent,et al.  Control synthesis for P-temporal event graphs , 2006, 2006 8th International Workshop on Discrete Event Systems.

[7]  R. Santos-Mendes,et al.  On the Model Reference Control for Max-Plus Linear Systems , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[8]  Ricardo Katz Max-Plus $(A,B)$-Invariant Spaces and Control of Timed Discrete-Event Systems , 2007, IEEE Transactions on Automatic Control.

[9]  M. Plus Second Order Theory of Min-Linear Systems and its Application to Discrete Event Systems , 1998 .

[10]  Bertrand Cottenceau,et al.  Interval analysis and dioid: application to robust controller design for timed event graphs , 2004, Autom..

[11]  J. Quadrat,et al.  Algebraic tools for the performance evaluation of discrete event systems , 1989, Proc. IEEE.

[12]  Bertrand Cottenceau,et al.  Interval systems over idempotent semiring , 2009, 1306.1136.

[13]  J. Quadrat,et al.  Linear system theory for discrete event systems , 1984, The 23rd IEEE Conference on Decision and Control.

[14]  Jean Jacques Loiseau,et al.  Duality Between Invariant Spaces for Max-Plus Linear Discrete Event Systems , 2009, SIAM J. Control. Optim..

[15]  Bruno Gaujal,et al.  Optimal routing for end-to-end guarantees: the price of multiplexing , 2007, Valuetools 2007.

[16]  C. Leake Synchronization and Linearity: An Algebra for Discrete Event Systems , 1994 .

[17]  D. Luenberger An introduction to observers , 1971 .

[18]  Bertrand Cottenceau,et al.  Synthesis of greatest linear feedback for timed-event graphs in dioid , 1999, IEEE Trans. Autom. Control..

[19]  Bertrand Cottenceau,et al.  Observer design for max-plus-linear systems , 2007 .

[20]  Jianfeng Mao,et al.  Scalable optimization algorithms for discrete event systems with real-time constraints: An overview of recent developments , 2008, 2008 9th International Workshop on Discrete Event Systems.

[21]  Bart De Schutter,et al.  Model predictive control for max-plus-linear discrete event systems , 2001, Autom..

[22]  Didier Dubois,et al.  A linear-system-theoretic view of discrete-event processes , 1983 .

[23]  Ramine Nikoukhah,et al.  Second order theory of min-linear systems and its application to discrete event systems , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[24]  Ricardo D. Katz,et al.  Reachability and Invariance Problems in Max-plus Algebra , 2003, POSTA.

[25]  S. Gaubert Theorie des systemes lineaires dans les dioides , 1992 .

[26]  Bertrand Cottenceau,et al.  Model reference control for timed event graphs in dioids , 2001, Autom..

[27]  Geert Jan Olsder,et al.  Max Plus at Work: Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its Applications , 2005 .

[28]  L. Hardouin,et al.  Adaptive feedback control for (max,+)-linear systems , 2005, 2005 IEEE Conference on Emerging Technologies and Factory Automation.

[29]  J.-L. Ferrier,et al.  Interval Analysis in Dioid: Application to Robust Open-Loop Control for Timed Event Graphs , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.