BDDC for mixed-hybrid formulation of flow in porous media with combined mesh dimensions

Summary We extend the balancing domain decomposition by constraints (BDDC) method to flows in porous media discretised by mixed-hybrid finite elements with combined mesh dimensions. Such discretisations appear when major geological fractures are modelled by one-dimensional or two-dimensional elements inside three-dimensional domains. In this set-up, the global problem and the substructure problems have a symmetric saddle-point structure, containing a ‘penalty’ block due to the combination of meshes. We show that the problem can be reduced by means of iterative substructuring to an interface problem, which is symmetric and positive definite. The interface problem can thus be solved by conjugate gradients with the BDDC method as a preconditioner. A parallel implementation of this algorithm is incorporated into an existing software package for subsurface flow simulations. We study the performance of the iterative solver on several academic and real-world problems. Numerical experiments illustrate its efficiency and scalability. Copyright © 2015 John Wiley & Sons, Ltd.

[1]  Duk-Soon Oh,et al.  A BDDC Algorithm for Raviart-Thomas Vector Fields. , 2013 .

[2]  Yuanle Ma,et al.  Computational methods for multiphase flows in porous media , 2007, Math. Comput..

[3]  Pavel Burda,et al.  Face-based selection of corners in 3D substructuring , 2009, Math. Comput. Simul..

[4]  Jan Mandel,et al.  On the Equivalence of Primal and Dual Substructuring Preconditioners , 2008, 0802.4328.

[5]  Ivana Pultarová Preconditioning of the coarse problem in the method of balanced domain decomposition by constraints , 2012, Math. Comput. Simul..

[6]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[7]  Mary F. Wheeler,et al.  Parallel Domain Decomposition Method for Mixed Finite Elements for Elliptic Partial Differential Equations , 1990 .

[8]  Jan Mandel,et al.  BDDC and FETI-DP under minimalist assumptions , 2007, Computing.

[9]  M. Rozložník,et al.  Mixed-hybrid finite element approximation of the potential fluid flow problem , 1995 .

[10]  D. Arnold Mixed finite element methods for elliptic problems , 1990 .

[11]  R. Lehoucq,et al.  A Primal-Based Penalty Preconditioner for Elliptic Saddle Point Systems , 2006, SIAM J. Numer. Anal..

[12]  Xuemin Tu,et al.  A balancing domain decomposition method by constraints for advection-diffusion problems , 2008 .

[13]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[14]  Xuemin Tu,et al.  Three‐level BDDC in two dimensions , 2007 .

[15]  Tarek P. Mathew,et al.  Schwarz alternating and iterative refinement methods for mixed formulations of elliptic problems, part I: Algorithms and numerical results , 1993 .

[16]  Pavel Burda,et al.  ON SELECTION OF INTERFACE WEIGHTS IN DOMAIN DECOMPOSITION METHODS , 2013 .

[17]  J. Wang,et al.  Analysis of the Schwarz algorithm for mixed finite elements methods , 1992 .

[18]  J. Cros,et al.  A preconditioner for the Schur complement domain decomposition method , 2003 .

[19]  Patrick R. Amestoy,et al.  Multifrontal parallel distributed symmetric and unsymmetric solvers , 2000 .

[20]  John H. Cushman,et al.  A primer on upscaling tools for porous media , 2002 .

[21]  Bedrich Sousedík,et al.  Nested BDDC for a saddle-point problem , 2011, Numerische Mathematik.

[22]  J. Mandel,et al.  Adaptive selection of face coarse degrees of freedom in the BDDC and the FETI-DP iterative substructuring methods , 2007 .

[23]  Clark R. Dohrmann,et al.  Multispace and multilevel BDDC , 2007, Computing.

[24]  Clark R. Dohrmann,et al.  Convergence of a balancing domain decomposition by constraints and energy minimization , 2002, Numer. Linear Algebra Appl..

[25]  Jan Mandel,et al.  Adaptive BDDC in three dimensions , 2009, Math. Comput. Simul..

[26]  J. T. Oden,et al.  Dual-Mixed Hybrid finite element method for second-order elliptic problems , 1977 .

[27]  Jan Brezina,et al.  Mixed-Hybrid Formulation of Multidimensional Fracture Flow , 2010, NMA.

[28]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[29]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[30]  J. Mandel,et al.  Balancing domain decomposition for mixed finite elements , 1995 .

[31]  Manolis Papadrakakis,et al.  The mosaic of high performance domain Decomposition Methods for Structural Mechanics: Formulation, interrelation and numerical efficiency of primal and dual methods , 2003 .

[32]  M. T UMAy,et al.  Schur Complement Systems in the Mixed-hybrid Finite Element Approximation of the Potential Fluid Flow Problem , 2000 .

[33]  Knut-Andreas Lie,et al.  A Multiscale Mixed Finite Element Method for Vuggy and Naturally Fractured Reservoirs , 2010 .

[34]  J. Mandel,et al.  An algebraic theory for primal and dual substructuring methods by constraints , 2005 .

[35]  Vincent Martin,et al.  Modeling Fractures and Barriers as Interfaces for Flow in Porous Media , 2005, SIAM J. Sci. Comput..

[36]  X. Tu A BDDC algorithm for flow in porous media with a hybrid finite element discretization. , 2007 .

[37]  Howard C. Elman,et al.  Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .

[38]  Olof B. Widlund,et al.  An Analysis of a FETI-DP Algorithm on Irregular Subdomains in the Plane , 2008, SIAM J. Numer. Anal..

[39]  P. Vassilevski Multilevel Block Factorization Preconditioners: Matrix-based Analysis and Algorithms for Solving Finite Element Equations , 2008 .

[40]  Jan Mandel,et al.  Adaptive-Multilevel BDDC and its parallel implementation , 2013, Computing.

[41]  Xuemin Tu,et al.  A three-level BDDC algorithm for a saddle point problem , 2008, Numerische Mathematik.

[42]  J. Bear Dynamics of Fluids in Porous Media , 1975 .

[43]  Xuemin Tu Three-Level BDDC in Three Dimensions , 2007, SIAM J. Sci. Comput..

[44]  Martin Vohralík,et al.  Numerical simulation of fracture flow with a mixed-hybrid FEM stochastic discrete fracture network model , 2005 .

[45]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[46]  X. Tu A BDDC ALGORITHM FOR A MIXED FORMULATION OF FLOW IN POROUS MEDIA , 2005 .

[47]  Olof B. Widlund,et al.  BDDC Algorithms for Incompressible Stokes Equations , 2006, SIAM J. Numer. Anal..

[48]  CLARK R. DOHRMANN,et al.  A Preconditioner for Substructuring Based on Constrained Energy Minimization , 2003, SIAM J. Sci. Comput..