Nonlinear wavefront reconstruction methods for pyramid sensors using Landweber and Landweber-Kaczmarz iterations.

Accurate and robust wavefront reconstruction methods for pyramid wavefront sensors are in high demand, as these sensors are planned to be part of many instruments currently under development for ground-based telescopes. The pyramid sensor relates the incoming wavefront and its measurements in a nonlinear way. Nevertheless, almost all existing reconstruction algorithms are based on a linearization of the model. The assumption of a linear pyramid sensor response is justifiable in closed-loop adaptive optics (AO) when the measured phase information is small, but, depending on the system, may not be feasible due to unpreventable errors such as non-common path aberrations. In order to solve the nonlinear inverse problem of wavefront reconstruction from pyramid sensor data, we introduce two new methods based on the nonlinear Landweber and Landweber-Kaczmarz iterations. Using these algorithms, we experience high-quality wavefront estimation, especially for the non-modulated sensor, by still keeping the numerical effort feasible for large-scale AO systems.

[1]  L. Busoni,et al.  Large Binocular Telescope Adaptive Optics System: new achievements and perspectives in adaptive optics , 2011, Optical Engineering + Applications.

[2]  L. Carbonaro,et al.  Wavefront sensor design for the GMT natural guide star AO system , 2012, Other Conferences.

[3]  A. Bakushinsky,et al.  Iterative Methods for Approximate Solution of Inverse Problems , 2005 .

[4]  Ronny Ramlau,et al.  Wavefront reconstruction for ELT-sized telescopes with pyramid wavefront sensors , 2018, Astronomical Telescopes + Instrumentation.

[5]  J. Hardy,et al.  Adaptive Optics for Astronomical Telescopes , 1998 .

[6]  Olivier Absil,et al.  Single conjugate adaptive optics for the ELT instrument METIS , 2018 .

[7]  Andreas Neubauer,et al.  Cumulative wavefront reconstructor for the Shack-Hartmann sensor , 2011 .

[8]  Armando Riccardi,et al.  Laboratory characterization and performance of the high-order adaptive optics system for the Large Binocular Telescope , 2010 .

[9]  Otmar Scherzer,et al.  On Steepest-Descent-Kaczmarz methods for regularizing systems of nonlinear ill-posed equations , 2008, Appl. Math. Comput..

[10]  Fernando Vargas-Martin,et al.  Quantitative phase microscopy of transparent samples using a liquid crystal display , 2013, Journal of biomedical optics.

[11]  I. Surdej Co-phasing segmented mirrors: theory, laboratory experiments and measurements on sky , 2011 .

[12]  I. Iglesias Pyramid phase microscopy. , 2011, Optics letters.

[13]  R. Ragazzoni,et al.  Sensitivity of a pyramidic Wave Front sensor in closed loop Adaptive Optics , 1999 .

[14]  Miska Le Louarn,et al.  Comparison between a model-based and a conventional pyramid sensor reconstructor. , 2007, Applied optics.

[15]  Simone Esposito,et al.  Adaptive optics for ophthalmic applications using a pyramid wavefront sensor. , 2006, Optics express.

[16]  Simon Thibault,et al.  INO Pyramidal Wavefront Sensor Demonstrator: first closed-loop on-sky operation at Mont-Mégantic Telescope , 2015 .

[17]  Roberto Ragazzoni,et al.  PWFSs on GMCAO: a different approach to the non-linearity issue , 2016, Astronomical Telescopes + Instrumentation.

[18]  Benoit Neichel,et al.  General formalism for Fourier-based wave front sensing: application to the pyramid wave front sensors , 2017 .

[19]  Richard G Lane,et al.  Phase retrieval from subdivision of the focal plane with a lenslet array. , 2004, Applied optics.

[20]  Enrico Fedrigo,et al.  Parallel simulation tools for AO on ELTs , 2004, SPIE Astronomical Telescopes + Instrumentation.

[21]  Roberto Ragazzoni,et al.  Extended source pyramid wave-front sensor for the human eye. , 2002, Optics express.

[22]  Elizabeth Daly,et al.  Ophthalmic wavefront measurements using a versatile pyramid sensor , 2010 .

[23]  Gabor T. Herman,et al.  Image reconstruction from projections : the fundamentals of computerized tomography , 1980 .

[24]  Matthias Rosensteiner,et al.  Cumulative Reconstructor: fast wavefront reconstruction algorithm for Extremely Large Telescopes. , 2011, Journal of the Optical Society of America. A, Optics, image science, and vision.

[25]  Ronny Ramlau,et al.  Two novel algorithms for wavefront reconstruction from pyramid sensor data: Convolution with Linearized Inverse Filter and Pyramid Fourier Transform Reconstructor , 2017 .

[26]  Christopher Dainty,et al.  Linearity of the pyramid wavefront sensor. , 2006, Optics express.

[27]  M. Hanke,et al.  A convergence analysis of the Landweber iteration for nonlinear ill-posed problems , 1995 .

[28]  Jean-Pierre Véran,et al.  Development of a pyramidal wavefront sensor test-bench at INO , 2013 .

[29]  R. Ragazzoni Pupil plane wavefront sensing with an oscillating prism , 1996 .

[30]  Andreas Neubauer,et al.  A new cumulative wavefront reconstructor for the Shack–Hartmann sensor , 2013 .

[31]  Roberto Ragazzoni,et al.  Adaptive Optics for Extremely Large Telescopes III A STUDY OF PYRAMID WFS BEHAVIOUR UNDER IMPERFECT ILLUMINATION , 2013 .

[32]  Miska Le Louarn,et al.  Improving the performance of a pyramid wavefront sensor with modal sensitivity compensation. , 2008, Applied optics.

[33]  M. Kasper,et al.  Adaptive Optics for Astronomy , 2012, 1201.5741.

[34]  Roberto Ragazzoni,et al.  Laboratory characterization of a Foucault-like wavefront sensor for adaptive optics , 1998, Astronomical Telescopes and Instrumentation.

[35]  D. Rose,et al.  Analysis of a multilevel iterative method for nonlinear finite element equations , 1982 .

[36]  Ronny Ramlau,et al.  Convolution- and Fourier-transform-based reconstructors for pyramid wavefront sensor. , 2017, Applied optics.

[37]  Robert K. Tyson Introduction to Adaptive Optics , 2000 .

[38]  Jean-Franccois Sauvage,et al.  General formalism for Fourier based Wave Front Sensing , 2016 .

[39]  Sylvain Oberti,et al.  Adaptive optics simulations for the European Extremely Large Telescope , 2006, Astronomical Telescopes + Instrumentation.

[40]  Fabio Bortoletto,et al.  Final commissioning phase of the AdOpt@TNG module , 2000, Astronomical Telescopes and Instrumentation.

[41]  B. Halpern Fixed points of nonexpanding maps , 1967 .

[42]  F. Browder,et al.  Construction of fixed points of nonlinear mappings in Hilbert space , 1967 .

[43]  L. Busoni,et al.  The pyramid wavefront sensor for the high order testbench (HOT) , 2008, Astronomical Telescopes + Instrumentation.

[44]  S. McCormick An iterative procedure for the solution of constrained nonlinear equations with application to optimization problems , 1975 .

[45]  C. Vérinaud,et al.  Adaptive optics for high‐contrast imaging: pyramid sensor versus spatially filtered Shack–Hartmann sensor , 2005 .

[46]  Ronny Ramlau,et al.  Preprocessed cumulative reconstructor with domain decomposition: a fast wavefront reconstruction method for pyramid wavefront sensor. , 2013, Applied optics.

[47]  K. Meyn Solution of underdetermined nonlinear equations by stationary iteration methods , 1983 .

[48]  Norbert Hubin,et al.  Adaptive optics simulations for the European Extremely Large Telescope , 2006, SPIE Astronomical Telescopes + Instrumentation.

[49]  Christophe Verinaud,et al.  On the nature of the measurements provided by a pyramid wave-front sensor , 2004 .

[50]  T. Mckechnie,et al.  General Theory of Light Propagation and Imaging Through the Atmosphere , 2015, Progress in Optical Science and Photonics.

[51]  Remko Stuik,et al.  Status of the mid-infrared E-ELT imager and spectrograph METIS , 2016, Astronomical Telescopes + Instrumentation.

[52]  P. Hinz,et al.  High Contrast Imaging in the Visible: First Experimental Results at the Large Binocular Telescope , 2016, 1609.05147.

[53]  Nicholas Devaney,et al.  Cophasing of segmented mirrors using the pyramid sensor , 2003, SPIE Optics + Photonics.

[54]  Miska Le Louarn,et al.  Applying sensitivity compensation for pyramid wavefront sensor in different conditions , 2008, Astronomical Telescopes + Instrumentation.

[55]  Frank Natterer,et al.  Mathematical methods in image reconstruction , 2001, SIAM monographs on mathematical modeling and computation.

[56]  Otmar Scherzer,et al.  Convergence Analysis Of A Landweber—Kaczmarz Method For Solving Nonlinear Ill-Posed Problems , 2002 .

[57]  Armando Riccardi,et al.  Closed-loop performance of pyramid wavefront sensor , 2000, Defense, Security, and Sensing.

[58]  Barbara Kaltenbacher,et al.  Iterative Regularization Methods for Nonlinear Ill-Posed Problems , 2008, Radon Series on Computational and Applied Mathematics.

[59]  Thierry Fusco,et al.  Experimental study of an optimised Pyramid wave-front sensor for Extremely Large Telescopes , 2016, Astronomical Telescopes + Instrumentation.

[60]  Andreas Obereder,et al.  Dealing with spiders on ELTs: using a Pyramid WFS to overcome residual piston effects , 2018, Astronomical Telescopes + Instrumentation.

[61]  Jean-Pierre Véran,et al.  Pyramid versus Shack-Hartmann: Trade Study Results for the NFIRAOS NGS WFS - eScholarship , 2015 .

[62]  L. Landweber An iteration formula for Fredholm integral equations of the first kind , 1951 .

[63]  Simone Esposito,et al.  Fourier transform-wavefront reconstruction for the pyramid wavefront sensor , 2010 .

[64]  Ronny Ramlau,et al.  Wavefront reconstruction from non-modulated pyramid wavefront sensor data using a singular value type expansion , 2018 .

[65]  Brent L Ellerbroek,et al.  Efficient computation of minimum-variance wave-front reconstructors with sparse matrix techniques. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[66]  Andreas Neubauer,et al.  CUMULATIVE WAVEFRONT RECONSTRUCTOR FOR THE SHACK-HARTMANN SENSOR , 2011 .

[67]  Richard A Frazin,et al.  Efficient, nonlinear phase estimation with the nonmodulated pyramid wavefront sensor. , 2018, Journal of the Optical Society of America. A, Optics, image science, and vision.