Quantum Kaleidoscopes and Bell's theorem
暂无分享,去创建一个
A quantum kaleidoscope is defined as a set of observables, or states, consisting of many different subsets that provide closely related proofs of the Bell-Kochen-Specker (BKS) and Bell nonlocality theorems. The kaleidoscopes prove the BKS theorem through a simple parity argument, which also doubles as a proof of Bell's nonlocality theorem if use is made of the right sort of entanglement. Three closely related kaleidoscopes are introduced and discussed in this paper: a 15-observable kaleidoscope, a 24-state kaleidoscope and a 60-state kaleidoscope. The close relationship of these kaleidoscopes to a configuration of 12 points and 16 lines known as Reye's configuration is pointed out. The"rotations"needed to make each kaleidoscope yield all its apparitions are laid out. The 60-state kaleidoscope, whose underlying geometrical structure is that of ten interlinked Reye's configurations (together with their duals), possesses a total of 1120 apparitions that provide proofs of the two Bell theorems. Some applications of these kaleidoscopes to problems in quantum tomography and quantum state estimation are discussed.